精英家教网 > 高中数学 > 题目详情
求证:
(1)
2sin(π+θ)•cosθ-1
1-2sin2θ
=
tan(9 π+θ)+1
tan(π+θ)-1

(2)
tanθ•sinθ
tanθ-sinθ
=
cosθ•(tanθ+sinθ)
sin2θ
分析:(1)原式左边利用诱导公式及同角三角函数间的基本关系化简,右边利用诱导公式化简,得到两结果相等,即可得证;
(2)原式左边与右边分别利用同角三角函数间的基本关系化简,整理后得到两结果相等,即可得证.
解答:证明:(1)左边=
-2sinθcosθ-1
cos2θ-sin2θ
=
-(sinθ+cosθ)2
(sinθ+cosθ)cosθ-sinθ)
=
(sinθ+cosθ)
(sinθ-cosθ)
=
tanθ+1
tanθ-1
=
-sinθ-cosθ
cosθ-sinθ
=
-tanθ-1
1-tanθ
=
tanθ+1
tanθ-1

右边=
tan(8π+π+θ)+1
tanθ-1
=
tanθ+1
tanθ-1

∴左=右,得证;
(2)左边=
sinθ
cosθ
•sinθ
sinθ
cosθ
-sinθ
=
sin2θ
sinθ(1-cosθ)
=
sinθ
1-cosθ

右边=
cosθ•(
sinθ
cosθ
+sinθ)
sin2θ
=
sinθ(1+cosθ)
1-cos2θ
=
sinθ
1-cosθ

∴左=右,得证.
点评:此题考查了同角三角函数间的基本关系,以及运用诱导公式化简求值,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)=ax3+bx2+cx+d满足:①函数f(x)的图象过点P(3,-6);②函数f(x)在x1、x2处取得极值,且|x1-x2|=4;③函数y=f(x-1)的图象关于点(1,0)对称.
(1)求f(x)的表达式;
(2)若α,β∈R,求证:|f(2cosα)-f(2sinβ)|≤
643

(3)求过点P(3,-6)与函数f(x)的图象相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

 选做题(在A、B、C、D四小题中只能选做两题,并将选作标记用2B铅笔涂黑,每小题10分,共20分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).
A、(选修4-1:几何证明选讲)
如图,BD为⊙O的直径,AB=AC,AD交BC于E,求证:AB2=AE•AD
B、(选修4-2:矩形与变换)
已知a,b实数,如果矩阵M=
1a
b2
所对应的变换将直线3x-y=1变换成x+2y=1,求a,b的值.
C、(选修4-4,:坐标系与参数方程)
设M、N分别是曲线ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的动点,判断两曲线的位置关系并求M、N间的最小距离.
D、(选修4-5:不等式选讲)
设a,b,c是不完全相等的正数,求证:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江苏二模)选答题:本大题共四小题,请从这4题中选作2小题,如果多做,则按所做的前两题记分.每小题10分,共20分,解答时应写出文字说明,证明过程或演算步骤.
A、选修4-1:
几何证明选讲.如图,圆O的直径AB=4,C为圆周上一点,BC=2,过C作圆O的切线l,过A作l的垂线AD,AD分别与直线l、圆O交于点D,E,求∠DAC的度数与线段AE的长.
B、选修4-2:矩阵变换
求圆C:x2+y2=4在矩阵A=[
20
01
]的变换作用下的曲线方程.
C、选修4-4:坐标系与参数方程
若两条曲线的极坐标方程分别为ρ=1与ρ=2sinθ,它们相交于A、B两点,求线段AB的长.
D、选修4-5:不等式选讲
已知a、b、c为正数,且满足acos2θ+bsin2θ<c.求证:
a
cos2θ+
b
sin2θ<
c

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏锡常镇四市高考数学二模试卷(解析版) 题型:解答题

选答题:本大题共四小题,请从这4题中选作2小题,如果多做,则按所做的前两题记分.每小题10分,共20分,解答时应写出文字说明,证明过程或演算步骤.
A、选修4-1:
几何证明选讲.如图,圆O的直径AB=4,C为圆周上一点,BC=2,过C作圆O的切线l,过A作l的垂线AD,AD分别与直线l、圆O交于点D,E,求∠DAC的度数与线段AE的长.
B、选修4-2:矩阵变换
求圆C:x2+y2=4在矩阵A=[]的变换作用下的曲线方程.
C、选修4-4:坐标系与参数方程
若两条曲线的极坐标方程分别为ρ=1与ρ=2sinθ,它们相交于A、B两点,求线段AB的长.
D、选修4-5:不等式选讲
已知a、b、c为正数,且满足acos2θ+bsin2θ<c.求证:cos2θ+sin2θ<

查看答案和解析>>

同步练习册答案