精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R上的奇函数,且f(1)=$\frac{3}{2}$.
(1)求k与a的值;
(2)若关于x的不等式f(x)-2m+m•(4x+4-x)≤2在x∈[1,2]上恒成立,求实数m的取值范围.

分析 (1)由f(x)为R上的奇函数可得f(0)=0,解得k值,由f(1)=$\frac{3}{2}$可求得a值;
(2)令t=2x-2-x(1≤x≤2),由此不等式化为t-mt2≤2,分离参数求最大值,即可求实数m的取值范围.

解答 解:(1)∵f(x)=kax-a-x是定义域为R上的奇函数,
∴f(0)=0,得k=1.
此时,f(x)=ax-a-x,f(-x)=a-x-ax=-f(x),即f(x)是R上的奇函数.
∵f(1)=$\frac{3}{2}$,∴a-$\frac{1}{a}$=$\frac{3}{2}$,即2a2-3a-2=0,
解得a=2或a=-$\frac{1}{2}$(舍去),
(2)(2x-2-x)-2m+m•(4x+4-x)≤2
令t=2x-2-x(1≤x≤2),
由(1)知t=2x-2-x[1,2]上为增函数,∴t∈[$\frac{3}{2}$,$\frac{15}{4}$],∴$\frac{1}{t}$∈[$\frac{4}{15}$,$\frac{2}{3}$].
∴t-mt2≤2
∴m≥-$\frac{2}{{t}^{2}}$+$\frac{1}{t}$
∵-$\frac{2}{{t}^{2}}$+$\frac{1}{t}$=-2($\frac{1}{t}$-$\frac{1}{4}$)2+$\frac{1}{8}$∈[-$\frac{2}{9}$,$\frac{28}{225}$]
∴m≥$\frac{28}{225}$.

点评 本题是对函数单调性和奇偶性的综合考查.考查恒成立问题,正确分离参数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知正项数列{an}的前n项和为Sn,且a1=2,4Sn=an•an+1,n∈N+
(1)求数列的通项公式an
(2)求前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知cos(θ-$\frac{2π}{5}$)=$\frac{2}{3}$,则2sin($\frac{19π}{10}$-θ)+cos(θ+$\frac{13π}{5}$))等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.判断下列函数的奇偶性.
(1)f(x)=sin($\frac{3x}{4}+\frac{3π}{2}$);
(2)f(x)=$\frac{1+sinx-co{s}^{2}x}{1+sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.cos85°cos25°+sin85°sin25°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数y=2sin2x+2acosx+2a的最大值是$\frac{1}{2}$.
(1)求a的值;
(2)求y的最小值,并求y最小时x的值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数为偶函数的是(  )
A.f(x)=xB.f(x)=x2C.f(x)=$\frac{1}{x}$D.f(x)=x2-2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,4)且$\overrightarrow{a}$•$\overrightarrow{b}$=10,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.过抛物线y2=4x交点F的直线,交抛物线于A(x1,y1),B(x2,y2)(x1>x2>0,y1>0,y2<0)两点,$|{AB}|=\frac{25}{4}$.
(1)求直线AB的方程;
(2)求△AOB的外接圆的方程.

查看答案和解析>>

同步练习册答案