【题目】已知函数,.
(1)若函数在定义域内单调递增,求实数的取值范围;
(2)证明:方程有且只有一个实数根.
【答案】(1) (2) 见解析
【解析】
(1)依题意,得恒成立,即在区间内恒成立;
(2)方程有且只有一个实数根即证明函数的图象与直线有且只有一个交点.令,研究其图象变化趋势即可.
(1)由题得,函数的定义域为
由,
得,
依题意,得恒成立,
所以在区间内恒成立,
所以.
而 ,当且仅当,
即时,等号成立,
故,
因此实数的取值范围为.
(2)令,即,
即 ,
也就是证明函数的图象与直线有且只有一个交点.
由,
得
记 ,
所以
令 ,
当时, ,在区间内单调递减;
当时, ,在区间内单调递增,
所以当时, 有有极小值 ,
故,
因此在区间内单调递增,
又因为当,且时, ,当时, ,
因此函数的图象与直线有且只有一个交点,
故方程有且只有一个实数根.
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且,().
(1)计算,,,,并求数列的通项公式;
(2)若数列满足,求证:数列是等比数列;
(3)由数列的项组成一个新数列:,,,,,设为数列的前项和,试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.
(1)若以表示和为6的事件,求;
(2)现连玩三次,若以表示甲至少赢一次的事件,表示乙至少赢两次的事件,试问与是否为互斥事件?为什么?
(3)这种游戏规则公平吗?试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共个,生产一个遥控小车模型需分钟,生产一个遥控飞机模型需分钟,生产一个遥控火车模型需分钟,已知总生产时间不超过分钟,若生产一个遥控小车模型可获利元,生产一个遥控飞机模型可获利元,生产一个遥控火车模型可获利元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是由个有序实数构成的一个数组,记作:.其中称为数组的“元”,为的下标.如果数组中的每个“元”都来自数组中不同下标的“元”则称为的子数组.定义两个数组,的关系数为.
(1)若,,设是的含有两个“元”的子数组,求的最大值及此时的数组;
(2)若,,且,为的含有三个“元”的子数组,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其
上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保费 |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)记A为事件:“一续保人本年度的保费不高于基本保费”.求的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求的估计值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有120粒试验种子需要播种,现有两种方案:方案一:将120粒种子分种在40个坑内,每坑3粒;方案二:120粒种子分种在60个坑内,每坑2粒 如果每粒种子发芽的概率为0.5,并且,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(每个坑至多补种一次,且第二次补种的种子颗粒同第一次).假定每个坑第一次播种需要2元,补种1个坑需1元;每个成活的坑可收货100粒试验种子,每粒试验种子收益1元.
(1)用表示播种费用,分别求出两种方案的的数学期望;
(2)用表示收益,分别求出两种方案的收益的数学期望;
(3)如果在某块试验田对该种子进行试验,你认为应该选择哪种方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月20日,辽宁省人民政府公布了“”新高考方案,方案中“2”指的是在思想政治、地理、化学、生物4门中选择2门.“2”中记入高考总分的单科成绩是由原始分转化得到的等级分,学科高考原始分在全省的排名越靠前,等级分越高.小明同学是2018级的学生.已确定了必选地理且不选政治,为确定另选一科,小明收集并整理了生物与化学近10大联考的成绩百分比排名数据x(如的含义是指在该次考试中,成绩高于小明的考生占参加该次考试的考生数的)绘制茎叶图如下.
则由图中数据生物学科联考百分比排名的分位数为________.从平均数的角度来看你认为小明更应该选择________.(填生物或化学)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com