精英家教网 > 高中数学 > 题目详情
3.比较大小:cos(-508°)<cos(-144°).( 填>,<或=)

分析 根据cos(-508°)=cos508°=cos148°,cos(-144°)=cos144°,且函数y=cosx在(0°,180°)上是减函数,从而得到cos148°与cos144°的大小关系.

解答 解:∵cos(-508°)=cos508°=cos148°,cos(-144°)=cos144°,
函数y=cosx在(0°,180°)上是减函数,
∴cos148°<cos144°,
故答案为:<.

点评 本题主要考查诱导公式、余弦函数的单调性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知两直线l1:ax-y+2=0和l2:x+y-a=0的交点在第一象限,则实数a的取值范围是a>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.α,β是两个平面,m,n是两条直线,下列四个命题错误的是(  )
A.如果m⊥n,m⊥α,n∥β,那么α⊥β
B.如果m⊥α,n∥α,那么m⊥n
C.α∥β,m?α,那么m∥β
D.如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.甲乙两种商品在过去一段时间内的价格走势如图所示,假设某人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计),那么他持有的资金最多可变为(  )
A.120万元B.160万元C.220万元D.240万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AD=AC,AB=$\frac{1}{2}$DE,F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一个多面体的直观图如图1所示,其正(主)视图,侧(左)视图,俯视图如图2所示.
(1)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证;OE∥平面A1C1C;
(2)求平面AA1D1与平面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知中心在原点O,左焦点为F1(-1,0)的椭圆C的左顶点为A,上顶点为B,F1到直线AB的距离为$\frac{\sqrt{7}}{7}$b.
(1)求椭圆C的方程;
(2)若椭圆C1方程为:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0),椭圆C2方程为:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=3,若直线y=kx+b与两椭圆C2、C交于四点(依次为P、Q、R、S),且$\overrightarrow{PS}$+$\overrightarrow{RS}$=2$\overrightarrow{QS}$,原点到点E(k,b)的距离为$\frac{3}{2}$,求直线PS的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=xlnx.
(1)求f(x)单调区间以及 f(x)最小值.
(2)设F(x)=ax2+f′(x)(a∈[0,+∞)),讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在(3-$\sqrt{x}$)n(n≥2且n∈N)展开式中x的系数为an,则$\frac{3}{{a}_{2}}$+$\frac{{3}^{2}}{{a}_{3}}$+$\frac{{3}^{3}}{{a}_{4}}$+…+$\frac{{3}^{2015}}{{a}_{2016}}$=(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2015}{672}$D.$\frac{2015}{336}$

查看答案和解析>>

同步练习册答案