(本题满分10分)已知二次函数的图象过点(1,13),
且函数是偶函数.
(1)求的解析式;
(2)已知,,求函数在[,2]上的最大值和最小值.
科目:高中数学 来源: 题型:解答题
(本题满分12分)
某公司生产一种电了仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
,其中是仪器的月产量。
⑴将利润表示为月产量的函数。
⑵当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益―总成本=利润)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数定义域为,若对于任意的,,都有,且>0时,有>0.
⑴证明: 为奇函数;
⑵证明: 在上为单调递增函数;
⑶设=1,若<,对所有恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题14分)某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.
(2)该企业已筹集到10万元,并全部投入A,B两种产品的生产,问:怎样分配这
10万元投资,才能是企业获得最大利润,其最大利润约为多少万元.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB="20km,CB" ="10km" ,为了处理三家工厂的污水,现要在矩形ABCD 的区域中(含边界),且与A,B等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为km.
(Ⅰ)设∠BAO=(rad),将表示成的函数关系式;
(Ⅱ)请用(Ⅰ)中的函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
某出版社新出版一本高考复习用书,该书的成本为元一本,经销过程中每本书需付给代理商元的劳务费,经出版社研究决定,新书投放市场后定价为元一本,,预计一年的销售量为万本.
(Ⅰ)求该出版社一年的利润(万元)与每本书的定价的函数关系式;
(Ⅱ)若时,当每本书的定价为多少元时,该出版社一年利润最大,并求出的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com