【题目】已知二次函数f(x)=ax2+bx+c,满足f(0)=2,f(x+1)-f(x)=2x-1.
(1)求函数f(x)的解析式;
(2)求f(x)在区间 [-1,2]上的最大值;
(3)若函数f(x)在区间上单调,求实数的取值范围.
【答案】(1);(2)5(3).
【解析】
(1)由得,再根据得到,进而得到函数的解析式;(2)根据函数的单调性求出最值即可;(3)结合函数图象的开口方向,只需函数图象的对称轴不在区间内,由此得到不等式,解不等式即可.
(1)由f(0)=2,得c=2.
由f(x+1)-f(x)=2x-1,
得2ax+a+b=2x-1,
所以,解得,
所以.
(2)由(1)得,
故函数f(x)图象的对称轴为x=1.
所以函数在区间上单调递减,在区间上单调递增,
又f(-1)=5,f(2)=2,
所以f(x)在区间上的最大值为.
(3)因为f(x)的图象的对称轴方程为x=1,且函数f(x)在区间上单调,
所以,或,
解得,或1,
因此的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知函数,为偶函数,且当时,.记.给出下列关于函数的说法:①当时,;②函数为奇函数;③函数在上为增函数;④函数的最小值为,无最大值. 其中正确的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义区间的长度均为,多个互无交集的区间的并集长度为各区间长度之和,例如的长度。用表示不超过的最大整数,例如。记。设,,若用、和分别表示不等式、方程和不等式解集区间的长度,则当时,____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人同时生产内径为的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
从生产的零件内径的尺寸看、谁生产的零件质量较高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是等比数列,公比为q(q>0且q≠1),4a1 , 3a2 , 2a3成等差数列,且它的前4项和为S4=15.
(1)求{an}通项公式;
(2)令bn=an+2n(n=1,2,3…),求{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右焦点为,右顶点为,上顶点为,若, 与轴垂直,且.
(1)求椭圆方程;
(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com