精英家教网 > 高中数学 > 题目详情

【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

井号I

1

2

3

4

5

6

坐标(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

钻探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205


(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(2)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的 的值( 精确到0.01)相比于(1)中b,a的值之差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井? (参考公式和计算结果:
(3)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.

【答案】
(1)解:∵ = (2+4+5+6+8)=5, = (30+40+60+50+70)=50,

回归直线必过平衡点( ),

则a= ﹣b =50﹣6.5×5=17.5,

∴回归直线方程为y=6.5x+17.5,

当x=1时,y=6.5+17.5=24,即y的预报值为24.


(2)解:∵ =4, =46.25,∴ = ≈6.83, = =46.25﹣6.83×4=18.93,

≈5%, ≈8%,均不超过10%,

∴使用位置接近的已有旧井6(1,24).


(3)解:由题意知原有出油量不低于50L的井中,3,5,6这3口井是优质井,

2,4这两口井是非优质井,

由题意从这口井中,随机选3口,基本事件总数n= =10,

恰有2口是优质井包含怕基本事件个数m= =6,

∴恰有2口是优质井的概率P= = =


【解析】(1)先求出 ,由回归直线必过平衡点( ),求出回归直线方程,由此能求出当x=1时,y的预报值.(2)先分别求出 ,由此能求出使用位置接近的已有旧井.(3)由题意知原有出油量不低于50L的井中,3,5,6这3口井是优质井,2,4这两口井是非优质井,由此能求出恰有2口是优质井的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,射线l:θ= 与圆C:ρ=2交于点A,椭圆Γ的方程为ρ2= ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy (Ⅰ)求点A的直角坐标和椭圆Γ的参数方程;
(Ⅱ)若E为椭圆Γ的下顶点,F为椭圆Γ上任意一点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点F是抛物线τ:x2=2py (p>0)的焦点,点A是抛物线上的定点,且 =(2,0),点B,C是抛物线上的动点,直线AB,AC斜率分别为k1 , k2

( I)求抛物线τ的方程;
(Ⅱ)若k1﹣k2=2,点D是点B,C处切线的交点,记△BCD的面积为S,证明S为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理财公司有两种理财产品A和B.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立): 产品A产品B(其中p、q>0)

投资结果

获利40%

不赔不赚

亏损20%

概率

投资结果

获利20%

不赔不赚

亏损10%

概率

p


(1)已知甲、乙两人分别选择了产品A和产品B进行投资,如果一年后他们中至少有一人获利的概率大于 ,求p的取值范围;
(2)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品A和产品B之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的图象不可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos x的图象向右平移π个单位得到函数y=g(x)的图象,则g( )=(
A.
B.
C.﹣
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点F(﹣1,0),过直线l:x=﹣2右侧的动点P作PA⊥l于点A,∠APF的平分线交x轴于点B,|PA|= |BF|.

(1)求动点P的轨迹C的方程;
(2)过点F的直线q交曲线C于M,N,试问:x轴正半轴上是否存在点E,直线EM,EN分别交直线l于R,S两点,使∠RFS为直角?若存在,求出点E的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列 项和为 ,则下列一定成立的是( )
A.若 ,则
B.若 ,则
C.若 ,则
D.若 ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为

查看答案和解析>>

同步练习册答案