精英家教网 > 高中数学 > 题目详情
8.如图△ABC中,C=$\frac{π}{2}$,AC=$\sqrt{3}$,BC=1,D,E为线段AB的点,∠ACD=$\frac{π}{4}$,∠DCE=$\frac{π}{6}$,则△DCE的面积为(  )
A.$\frac{6-3\sqrt{3}}{4}$B.$\frac{9-3\sqrt{3}}{8}$C.$\frac{1}{4}$D.$\frac{\sqrt{3}}{8}$

分析 求出CD,CE,利用三角形的面积公式,即可得出结论.

解答 解:由题意,△ACD中,∠A=30°,∠ACD=45°,AC=$\sqrt{3}$,∴CD=$\frac{\sqrt{3}sin30°}{sin105°}$=$\frac{3\sqrt{2}-\sqrt{6}}{2}$,
△BCE中,∠BCE=15°,∠B=60°,∴∠DEC=75°,∴CE=CD=$\frac{3\sqrt{2}-\sqrt{6}}{2}$,
∴△DCE的面积为$\frac{1}{2}$×($\frac{3\sqrt{2}-\sqrt{6}}{2}$)2×sin30°=$\frac{6-3\sqrt{3}}{4}$.
故选:A.

点评 本题考查三角形面积的计算,考查正弦定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知cos($\frac{π}{3}$+α)=-$\frac{1}{3}$,则sin(α-$\frac{π}{6}$)的值为(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2\sqrt{3}}{3}$D.-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.a、b表示两条直线,α、β、γ表示三个平面,下列命题中错误的是(  )
A.a?α,b?α,且a∥β,b∥β,则α∥β
B.a、b是异面直线,则存在唯一的平面与a、b等距
C.a⊥α,b?β,a⊥b,则α∥β
D.α⊥γ,γ∥β,a⊥α,b⊥β,则a⊥b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=loga[(a-1)x-1].
(1)求函数f(x)的定义域;
(2)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在正方体ABCD-A1B1C1D1的棱所在的直线中,与直线AB垂直的异面直线共有(  )
A.1条B.2条C.4条D.8条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某学校有教师132人,职工33人,学生1485人.为了解食堂情况,拟采用分层抽样的方法从以上人员中抽取50人进行抽查,则在学生中应抽取45 人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.点P(x0,y0)是圆C:x2+y2=1上的一个动点,过点P的直线l与圆C相切
(1)求证:直线l的方程为x0x+y0y=1;
(2)若直线l与x轴、y轴的交点分别为点A、B,且|PB|,|PA|,|AB|成等比数列,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.小明同学每天下午4:00到5:00之间放学到家学习,小刚同学每天下午4:30到5:30之间到达小明家给他辅导功课,则小刚到小明家时就能见到小明的概率是(  )
A.1B.0.875C.0.65D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x-$\frac{1}{x}$-alnx.
(1)若曲线y=f(x)在点(1,f(1))处的切线与圆x2+y2=$\frac{1}{2}$,求a的值;
(2)当a∈[0,2]时,函数g(x)=x-lnx-$\frac{1}{e}$,若在[1,e]上至少存在一根x0,使得f(x0)≥g(x0),求实数a的取值范围.

查看答案和解析>>

同步练习册答案