精英家教网 > 高中数学 > 题目详情

【题目】出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的.在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点,定义它们之间的一种距离;到两点PQ距离相等的点的轨迹称为线段PQ垂直平分线.已知点,请解决以下问题:

1)求线段上一点到原点距离

2)写出线段AB垂直平分线的轨迹方程,并作出大致图像;

3)定义:若三角形三边的垂直平分线交于一点,则该点称为三角形的外心.试判断 外心是否存在,如果存在,求出外心;如果不存在,说明理由.

【答案】12 2)见解析 3)存在,

【解析】

1根据出租车几何学中“距离”的定义计算;

2)根据出租车几何学中“垂直平分线”的定义计算,即可得到图象;

3外心坐标为根据定义,得到的坐标。

解:(1)

2

,则

,则

,则

(图中每格小正方形单位是1

3)设外心坐标为.则

,得

所以点M

又因为,得

所以点M上,

,所以外心

6|+|n-9|上,

所以三边交于一点,存在外心

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然对数的底数,e≈2.718…).

(1)求函数f(x)的极值;

(2)若函数y=f(x)g(x)在区间[1,2]上单调递增,求实数a的取值范围;

(3)若函数h(x)=在区间(0,+∞)上既存在极大值又存在极小值,并且函数h(x)的极大值小于整数b,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)a=1时,求函数在(2)处的切线方程:

(2)a=2时,求函数的单调区间和极值;

(3)上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,讨论函数的单调性;

(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知五面体中,四边形为矩形,,且二面角的大小为.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左.右焦点分别为为坐标原点.

(1)若斜率为的直线交椭圆于点,若线段的中点为,直线的斜率为,求的值;

(2)已知点是椭圆上异于椭圆顶点的一点,延长直线分别与椭圆交于点,设直线的斜率为,直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取100件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.

产品质量/毫克

频数

3

9

19

35

22

7

5

(1)由以上统计数据完成下面列联表,能否在犯错误的概率不超过0.15的前提下认为产品的包装合格与两条自动包装流水线的选择有关?

甲流水线

乙流水线

总计

合格品

不合格品

总计

附表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:

(2)按照以往经验,在每小时次品数超过180件时,产品的次品率会大幅度增加,为检测公司的生产能力,同时尽可能控制不合格品总量,公司工程师抽取几组一小时生产产品数据进行次品情况检查分析,在(单位:百件)件产品中,得到次品数量(单位:件)的情况汇总如下表所示:

(百件)

0.5

2

3.5

4

5

(件)

2

14

24

35

40

根据公司规定,在一小时内不允许次品数超过180件,请通过计算分析,按照公司的现有生产技术设备情况,判断可否安排一小时生产2000件的任务?

(参考公式:用最小二乘法求线性回方程的系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地的出租车价格规定:起步费元,可行公里,公里以后按每公里元计算,可再行公里;超过公里按每公里元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定。

1)若小明乘出租车从学校到家,共公里,请问他应付出租车费多少元?

2)求车费(元)与行车里程(公里)之间的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等腰三角形△ABC的两腰ABAC所在直线的方程分别为是底边BC上一点,求:

(1)底边BC所在直线的方程;

(2)△ABC的面积.

查看答案和解析>>

同步练习册答案