精英家教网 > 高中数学 > 题目详情

【题目】某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: 后得到如图所示的频率分布直方图,问:

(1)在40名读书者中年龄分布在的人数;

(2)估计40名读书者年龄的平均数和中位数;

(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列和数学期望.

【答案】(1)30;(2)平均数为54,中位数为55;(3)答案见解析.

【解析】试题分析:1)由频率分布直方图知年龄在[4070)的频率为0.75,由此能求出40名读书者中年龄分布在的人数.
2)利用频率分布直方图能求出40名读书者年龄的平均数和中位数.
3)年龄在的读书者有2人,年龄在的读书者有4人,设年龄在的读书者人数为X,由此能求出恰有1名读书者年龄在[3040)的概率.

试题解析:

(1)由频率分布直方图知年龄在的频率为,所以40名读书者中年龄分布在的人数为.

(2)40名读书者年龄的平均数为

设中位数为,则,解得.

即40名读书者年龄的中位数为55.

(3)年龄在的读书者有人,年龄在的读书者有人,所以的所有可能取值有0,1,2.

的分布列如下:

0

1

2

数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,定义域为上的函数是由一条射线及抛物线的一部分组成.利用该图提供的信息解决下面几个问题.

1)求的解析式;

2)若关于的方程有三个不同解,求的取值范围;

3)若,求的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形与梯形所在的平面相互垂直, ,点在线段上.

(1)证明:平面平面

(2)若平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

(1)求的取值范围;

(2)是否存在实数, 对于符合题意的任意,当 时均有?

若存在,求出所有的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三角形的面积为,其中为三角形的边长,为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为( )

A.

B.

C. ,(为四面体的高)

D. ,(分别为四面体的四个面的面积,为四面体内切球的半径)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数fx)满足:对任意都有,且当x>0时,

1)求的值,并证明为奇函数;

2)判断函数的单调性,并证明;

3)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上点处的切线方程为

求抛物线的方程;

为抛物线上的两个动点,其中,线段的垂直平分线轴交于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上

)求椭圆的方程

设动直线与椭圆有且仅有一个公共点,判断是否存在以原点为圆心的圆,满足此圆与相交于两点 (两点均不在坐标轴上),且使得直线的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实常数).

)若的极值点,求实数的取值范围.

)讨论函数上的单调性.

)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案