精英家教网 > 高中数学 > 题目详情

【题目】若函数在区间上递减,则a的取值范围是______

【答案】

【解析】

由题意,在区间(﹣∞,1]上,a的取值需令真数x2﹣2ax+1+a>0,且函数u=x2﹣2ax+1+a在区间(﹣∞,1]上应单调递减,这样复合函数才能单调递减.

令u=x2﹣2ax+1+a,则f(u)=lgu,

配方得u=x2﹣2ax+1+a=(x﹣a)2 ﹣a2+a+1,故对称轴为x=a,如图所示:

由图象可知,当对称轴a1时,u=x2﹣2ax+1+a在区间(﹣∞,1]上单调递减,

又真数x2﹣2ax+1+a>0,二次函数u=x2﹣2ax+1+a在(﹣∞,1]上单调递减,

故只需当x=1时,若x2﹣2ax+1+a>0,

则x∈(﹣∞,1]时,真数x2﹣2ax+1+a>0,

代入x=1解得a2,所以a的取值范围是[1,2)

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,当点的图像上移动时,点在函数的图像上移动,

(1)若点的坐标为,点也在图像上,求的值。

(2)求函数的解析式。

(3)当,令,求上的最值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数的定义域为[-1,1],当时,

(1)求函数上的值域;

(2)若时,函数的最小值为-2,求实数λ的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10四面体ABCD及其三视图如图所示平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH

1求四面体ABCD的体积

2证明四边形EFGH是矩形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.

(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,函数处的切线互相垂直,求的值;

(2)当函数在定义域内不单调时,求证:

(3)是否存在实数,使得对任意,都有函数的图象在的图象的下方?若存在,请求出最大整数的值;若不存在,请说理由.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①存在实数,使; ②函数是偶函数;

③若是第一象限的角,且,则

④直线是函数的一条对称轴;

⑤函数的图像关于点成对称中心图形.

其中正确命题的序号是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两个旅游景点之间有一条5km的直线型水路,一艘游轮以的速度航行时考虑到航线安全要求,每小时使用的燃料费用为万元为常数,且,其他费用为每小时万元.

若游轮以的速度航行时,每小时使用的燃料费用为万元,要使每小时的所有费用不超过万元,求x的取值范围;

求该游轮单程航行所需总费用的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(Ⅰ)求的解析式;

(Ⅱ)当,求的值域.

查看答案和解析>>

同步练习册答案