精英家教网 > 高中数学 > 题目详情
5.设 $f(x)=\left\{\begin{array}{l}x-2\\ f[{f(x+6)}]\end{array}\right.\begin{array}{l}({x≥10})\\({x<10})\end{array}$,则f(5)的值为11.

分析 利用函数的解析式,直接求解即可.

解答 解:$f(x)=\left\{\begin{array}{l}x-2\\ f[{f(x+6)}]\end{array}\right.\begin{array}{l}({x≥10})\\({x<10})\end{array}$,
则f(5)=f(f(11))=f(9)=f[f(14)]=f(13)=13-2=11.
故答案为:11.

点评 本题考查抽象函数的应用,正确利用分段函数的表达式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-3,2).
(1)求$|{\overrightarrow a-\overrightarrow b}|$;
(2)k为何值时,k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$互相垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}是等比数列且an>0,a1=$\frac{1}{2}$,前n项和为Sn,S3+a3,S5+a5,S4+a4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明函数f(x)=$\frac{2x+1}{x-1}$在(1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=sinx+sin(x+\frac{π}{2}),x∈R$
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相应x的取值集合;
(3)若f(α)=$\frac{3}{4}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题p:实数x满足不等式组$\left\{\begin{array}{l}2<{2^x}<8\\{x^2}-6x+8<0\end{array}\right.$命题q:实数x满足不等式(x-1)(x+a-12)≤0(其中a∈R).
(Ⅰ)解命题p中的不等式组;
(Ⅱ)若p是q的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列四个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②要得到函数y=sinx的图象,只需将函数$y=cos(x-\frac{π}{3})$的图象向左平移$\frac{π}{6}$个单位;
③若m≥-1,则函数$y={log_{\frac{1}{2}}}({x^2}-2x-m)$的值城为R;
④“a=1”是“函数f(x)=$\frac{{a-{e^x}}}{{1+a{e^x}}}$在定义域上是奇函数”的充分不必要条件;
⑤已知{an}为等差数列,若$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正值时,n=20.
其中正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点$P(-\sqrt{3},0)$作直线l与圆O:x2+y2=1交于A、B两点,O为坐标原点,设∠AOB=θ,且$θ∈(0,\frac{π}{2})$,当△AOB的面积为$\frac{{\sqrt{3}}}{4}$时,直线l的斜率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班50位同学周考数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求图中[80,90)的矩形高的值,并估计这50人周考数学的平均成绩;
(2)根据直方图求出这50人成绩的众数和中位数(精确到0.1);
(3)从成绩在[40,60)的学生中随机选取2人,求这2人成绩分别在[40,50)、[50,60)的概率.

查看答案和解析>>

同步练习册答案