精英家教网 > 高中数学 > 题目详情

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面积为 ,求△ABC的周长.

【答案】
(1)解:已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,

整理得:2cosCsin(A+B)=sinC,

∵sinC≠0,sin(A+B)=sinC

∴cosC=

又0<C<π,

∴C=


(2)解:由余弦定理得7=a2+b2﹣2ab

∴(a+b)2﹣3ab=7,

∵S= absinC= ab=

∴ab=6,

∴(a+b)2﹣18=7,

∴a+b=5,

∴△ABC的周长为5+


【解析】(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某园林基地培育了一种新观赏植物,经过一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按照 的分组作出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在的数据).

1)求样本容量和频率分布直方图中的的值;

2)在选取的样本中,从高度在厘米以上(含厘米)的植株中随机抽取株,求所取的株中至少有一株高度在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C:+=1(a>b>0)的短轴两端点为B1(0,﹣1)、B2(0,1),离心率e=,点P是椭圆C上不在坐标轴上的任意一点,直线B1P和B2P分别与x轴相交于M,N两点,

(1)求椭圆的方程和的值;

(2)若点坐标为(1,0),点的直线与椭圆相交于两点,试求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有四个命题:
①函数y=tan x在每一个周期内都是增函数.
②函数y=sin(2x+ )的图象关于直线x= 对称;
③函数y=tanx的对称中心(kπ,0),k∈Z.
④函数y=sin(2x﹣ )是偶函数.
其中正确结论个数(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只口袋中装有形状、大小都相同的10个小球,其中有红球2个,黑球3个,白球5个.

从中1次随机摸出2个球,求2个球颜色相同的概率;

从中1次随机摸出3个球,记白球的个数为X,求随机变量X的概率分布和数学期望

每次从袋中随机摸出1个球,记下颜色后放回,连续取3次,求取到红球的次数大于取到白球的次数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx+ ,m∈R
(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;
(2)讨论函数g(x)=f′(x)﹣ 零点的个数;
(3)(理科)若对任意b>a>0, <1恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的一条弦被点平分,则此弦所在的直线方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的则判断框内可以填入

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2x+sin2x﹣4cosx.
(1)求 的值;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案