精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的函数,对任意,都有成立,若函数的图象关于直线对称,则

A.B.C.D.

【答案】A

【解析】

yfx+1)向右平移1个单位可得yfx)的图象可知,函数yfx)的图象关于x0对称,即函数yfx)为偶函数,在已知条件中令x=﹣3,可求f3)及函数的周期,利用所求周期即可求解得到f2013)的值.

解:∵yfx+1)向右平移1个单位可得yfx)的图象,

yfx+1)的对称轴x=﹣1向右平移1个单位可得yfx)的对称轴x0

∴函数yfx)的图象关于x0对称,即函数yfx)为偶函数,

fx+6)=fx+f3),

x=﹣3,则f3)=f(﹣3+f3

∵函数yfx)为偶函数,

f(﹣3)=f3),

f3)=2f3),则f3)=0

fx+6)=fx),

fx)为周期函数,且周期为6

f2013)=f335×6+3)=f3)=0

f2013)=0

故选A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中错误的是( )

A. 命题“若,则”的逆否命题是真命题

B. 命题“”的否定是“

C. 为真命题,则为真命题

D. 已知,则“”是“”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)讨论的单调性;

2)设,若上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在顶角为圆锥内有一截面,在圆锥内放半径分别为的两个球与圆锥的侧面、截面相切,两个球分别与截面相切于,则截面所表示的椭圆的离心率为( )

(注:在截口曲线上任取一点,过作圆锥的母线,分别与两个球相切于点,由相切的几何性质可知,,于是,为椭圆的几何意义)

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)|3x2|.

(1)解不等式f(x)<4|x1|

(2)已知mn1(mn>0),若|xa|f(x)≤(a>0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为垛积术”.现有高阶等差数列,其前7项分别为14814233654,则该数列的第19项为( )(注:

A.1624B.1024C.1198D.1560

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着马拉松运动在全国各地逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对参加马拉松运动的情况进行了统计调査,其中一项是调査人员从参与马拉松运动的人中随机抽取100人,对其每月参与马拉松运动训练的夭数进行统计,得到以下统计表;

平均每月进行训练的天数

人数

15

60

25

1)以这100人平均每月进行训练的天数位于各区间的频率代替该市参与马拉松训练的人平均每月进行训练的天数位于该区间的概率.从该市所有参与马拉松训练的人中随机抽取4个人,求恰好有2个人是“平均每月进行训练的天数不少于20天”的概率;

2)依据统计表,用分层抽样的方法从这100个人中抽取12个,再从抽取的12个人中随机抽取3个,表示抽取的是“平均每月进行训练的天数不少于20天”的人数,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的焦点为,过的直线两点,过作与轴垂直的直线,又知点,直线记为交于点.设,已知当时,

(Ⅰ)求椭圆的方程;

(Ⅱ)求证:无论如何变化,点的横坐标是定值,并求出这个定值.

查看答案和解析>>

同步练习册答案