(14分)若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,(其中为自然对数的底数).
(1)求的极值;
(2) 函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
解:(1) , .
当时,.
当时,,此时函数递减;
当时,,此时函数递增;
∴当时,取极小值,其极小值为.…………6分
(2)解法一:由(1)可知函数和的图象在处有公共点,
则,
当时,.
当时,,此时函数递增;
当时,,此时函数递减;
∴当时,取极大值,其极大值为.
从而,即恒成立.
∴函数和存在唯一的隔离直线.…………………14分
解法二: 由(1)可知当时, (当且当时取等号) .
若存在和的隔离直线,则存在实常数和,使得和恒成立,
令,则且
,即.后面解题步骤同解法一.
因此若存在和的隔离直线,则该直线过这个公共点.
设隔离直线的斜率为,则直线方程为,即.
由,可得当时恒成立
, 由,得.
下面证明当时恒成立.令,
【解析】略
科目:高中数学 来源: 题型:
(09年长沙一中第八次月考理)(13分)若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,(其中为自然对数的底数).
(Ⅰ)求的极值;
(Ⅱ) 函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.查看答案和解析>>
科目:高中数学 来源: 题型:
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,(其中为自然对数的底数),根据你的数学知识,推断与间的隔离直线方程为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,(其中为自然对数的底数).
(1)求的极值;
(2) 函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届福建漳州高二下学期期中考试理数学卷(解析版) 题型:解答题
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).
(Ⅰ)求的极值;
(Ⅱ)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com