精英家教网 > 高中数学 > 题目详情
4.用函数单调性的定义证明:函数$f(x)=\frac{x+1}{x-1}$在区间[2,6]上是减函数.

分析 根据函数单调性的定义:取值、作差、判符号、下结论,即可证明函数f(x)在区间[2,6]上的单调性.

解答 证明:∵f(x)=$\frac{x+1}{x-1}$=1+$\frac{2}{x-1}$,
∴任取x1、x2∈[2,6],且x1<x2
则f(x1)-f(x2)=(1+$\frac{2}{{x}_{1}-1}$)-(1+$\frac{2}{{x}_{2}-1}$)
=$\frac{2}{{x}_{1}-1}$-$\frac{2}{{x}_{2}-1}$
=$\frac{2{(x}_{2}{-x}_{1})}{{(x}_{1}-1){(x}_{2}-1)}$;
∵2≤x1<x2≤6,
∴x2-x1>0,(x1-1)(x2-1)>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2);
∴函数f(x)在区间[2,6]上是减函数.

点评 本题考查了分离常数法化简函数解析式以及根据函数的定义证明一个函数为减函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD=1,PD⊥面ABCD,E为棱BC的中点.
(1)求四棱锥P-ABCD的体积;
(2)求异面直线PB和DE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列语句不是命题的是(  )
A.祁阳一中是一所一流名校
B.如果这道题做不到,那么这次考试成绩不理想
C.?x∈R,使得lnx0<0
D.画一个椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正四棱锥P-ABCD的侧棱与底面所成角为60°,M为PA中点,连接DM,则DM与平面PAC所成角的大小是45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对某杂志社一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图),则该样本的中位数、众数分别为(  )
A.47、45B.45、47C.46、45D.45、46

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设x∈R,则命题q:x>-1是命题p:x>0的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若x,y满足约束条件$\left\{\begin{array}{l}{x-3≤0}\\{y-2≥0}\\{y≤x+1}\end{array}\right.$,则目标函数z=-7x+y的最大值为(  )
A.-5B.-8C.-17D.-19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=1-i(i虚数单位),则$|\frac{2}{z}+{z^2}|$=(  )
A.2B.$\sqrt{10}$C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正三棱柱ABC-A′B′C′中,F是线段B′C′的中点,D,E分别是线段BB′,B′C′上的点,连接DE,BF,A′E,A′F,A′D,A′B,AC′,且2B′D=DB,B′E=$\frac{1}{4}$B′C′.
(1)探究平面A′BF与平面BCC′B′的位置关系,并进行说明;
(2)证明:AC′∥平面 A′DE.

查看答案和解析>>

同步练习册答案