分析 根据cosC可求得sinC和tanC,根据tanB=-tan(A+C),可求得tanB,进而求得B.由正弦定理可求得b,根据sinA=sin(B+C)求得sinA,进而根据三角形的面积公式求得面积.
解答 解:∵cosC=$\frac{\sqrt{5}}{5}$,
∴sinC=$\frac{2\sqrt{5}}{5}$,tanC=2,
∵tanB=-tan(A+C)=-$\frac{tanA+tanC}{1-tanAtanC}$=1,
又0<B<π,
∴B=$\frac{π}{4}$,
∴由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}$可得b=$\frac{csinB}{sinC}$=$\sqrt{10}$,
∴由sinA=sin(B+C)=sin($\frac{π}{4}$+C)得,sinA=$\frac{3\sqrt{10}}{10}$,
∴△ABC面积为:$\frac{1}{2}$bcsinA=6.
故答案为:6.
点评 本题主要考查了正弦定理和三角形面积公式的实际应用.正弦定理和余弦定理及三角形的面积公式都是解三角形的常用公式,需要重点记忆,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(-1)<f(1)<f(3) | B. | f(2)<f(3)<f(-4) | C. | f(-2)<f(0)<f(1) | D. | f(5)<f(-3)<f(-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overline{{x}_{1}}<\overline{{x}_{2}}$,甲比乙成绩稳定 | B. | $\overline{{x}_{1}}<\overline{{x}_{2}}$,乙比甲成绩稳定 | ||
C. | $\overline{{x}_{1}}>\overline{{x}_{2}}$,甲比乙成绩稳定 | D. | $\overline{{x}_{1}}>\overline{{x}_{2}}$,乙比甲成绩稳定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com