精英家教网 > 高中数学 > 题目详情
设x∈R,则f(x)=coscosx与g(x)=sinsinx的大小关系(  )
分析:利用f(x)、g(x)都是周期函数,且最小正周期都为2π,f(x)为偶函数,g(x)为奇函数可将考虑的范围缩小,利用诱导公式与三角函数的单调性判断即可.
解答:解:∵f(x)=coscosx,g(x)=sinsinx,
∴f(x)、g(x)都是周期函数,且最小正周期都为2π.
又f(-x)=coscos(-x)=coscosx,g(-x)=sinsin(-x)=sin(-sinx)=-sinsinx=-g(x),
∴f(x)为偶函数,g(x)为奇函数,
又当x∈[-π,0]时,f(x)>0,g(x)≤0恒成立,此时,f(x)>g(x).
∴只需考虑x∈[0,π]的情形.
∵sinsinx=cos(
π
2
-sinx),
π
2
-sinx和cosx同属于余弦函数的一个单调区间,(即
π
2
-sinx,cosx∈[0,π]),
∴只需比较
π
2
-sinx与cosx的大小即可.
事实上,
π
2
-sinx-cosx=
π
2
-
2
sin(x+
π
4
)≥
π
2
-
2
>0,
又余弦函数在[0,π]上单调递减,
∴sinsinx<coscosx.也即g(x)<f(x).
综上所述,当x∈[-π,π]时,f(x)>g(x),又f(x)、g(x)都是以2π为周期的周期函数,
∴f(x)>g(x),
故选:C.
点评:本题考查正弦函数与余弦函数的单调性、奇偶性,考查诱导公式与转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市临海市杜桥中学高三(下)3月月考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省重点中学协作体高三第一次联考数学试卷(理科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011年广东省高考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步练习册答案