【题目】已知椭圆上任一点到,的距离之和为4.
(1)求椭圆的标准方程;
(2)已知点,设直线不经过点,与交于,两点,若直线的斜率与直线的斜率之和为,判断直线是否过定点?若是,求出该定点的坐标;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数(其中为常数,为自然对数的底数,)
(1)若对任意,不等式恒成立,求实数的取值集合,
(2)已知正数满足:存在,使不等式成立.
①求的取值集合;
②试比较与的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥A﹣BCD中,△ABD和△ACD是边长为2的等边三角形,,O、E分别是BC、AC的中点.
(1)求证:OE∥平面ABD;
(2)求证:平面ABC⊥平面BCD;
(3)求三棱锥A﹣BCD的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与双曲线有相同的焦点坐标,且点在椭圆上.
(1)求椭圆的标准方程;
(2)设A、B分别是椭圆的左、右顶点,动点M满足,垂足为B,连接AM交椭圆于点P(异于A),则是否存在定点T,使得以线段MP为直径的圆恒过直线BP与MT的交点Q,若存在,求出点T的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某控制器中有一个易损部件,该部件由两个电子元件按图1方式连接而成.已知这两个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常工作相互独立.(一个月按30天算)
(1)求该部件的使用寿命达到一个月及以上的概率;
(2)为了保证该控制器能稳定工作,将若干个同样的部件按图2连接在一起组成集成块.每一个部件是否能正常工作相互独立.某开发商准备大批量生产该集成块,在投入生产前,进行了市场调查,结果如下表:
集成块类型 | 成本 | 销售金额 | |
Ⅰ | |||
Ⅱ | |||
Ⅲ |
其中是集成块使用寿命达到一个月及以上的概率,为集成块使用的部件个数.报据市场调查,试分析集成块使用的部件个数为多少时,开发商所得利润最大?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个平面,相互垂直,是它们的交线,则下面结论正确的是( )
A.垂直于平面的平面一定平行于平面
B.垂直于直线的平面一定平行于平面
C.垂直于平面的平面一定平行于直线
D.垂直于直线的平面一定与平面,都垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为,(t为参数),在以原点为极点,x轴正半轴为极轴的极坐标中,曲线的极坐标方程为.
(1)将与的方程化为极坐标方程;
(2)若曲线与的公共点都在上,,求r.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.
(1)若轴,且满足直线与圆相切,求圆的方程;
(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com