精英家教网 > 高中数学 > 题目详情

【题目】2020年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延.疫情就是命令,防控就是责任.在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,掀起了一场坚决打赢疫情防控阻击战的人民战争.下侧的图表展示了214日至29日全国新冠肺炎疫情变化情况,根据该折线图,下列结论正确的是(

A.16天中每日新增确诊病例数量呈下降趋势且19日的降幅最大

B.16天中每日新增确诊病例的中位数大于新增疑似病例的中位数

C.16天中新增确诊、新增疑似、新增治愈病例的极差均大于

D.19日至29日每日新增治愈病例数量均大于新增确诊与新增疑似病例之和

【答案】C

【解析】

由折线图分别观察变化趋势,估计中位数,计算极差,确认新增治愈病例数量与新增确诊与新增疑似病例之和,判断各选项后可得结论.

从新增确诊折线看19日降幅最大,但并不呈下降趋势,如20日比19日就是上升的,27,28,29三天还是增加的趋势,A错;

新增确诊病例和新增疑似病例的中位数在21、22日前后,新增疑似病例的中位数比新增确诊病例的中位数大,B错;

三根折线中最大值与最小值的差都大于2000C正确;

20日新增治愈病例数量小于新增确诊与新增疑似病例之和,D错误.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,政府相关部门引导乡村发展旅游的同时,鼓励农户建设温室大棚种植高品质农作物.为了解某农作物的大棚种植面积对种植管理成本的影响,甲,乙两同学一起收集6家农户的数据,进行回归分折,得到两个回归摸型:模型①:,模型②: ,对以上两个回归方程进行残差分析,得到下表:

种植面积()

2

3

4

5

7

9

每亩种植管理成本(百元)

25

24

21

22

16

14

模型①

估计值

25.27

23.62

21.97

17.02

13.72

残差

-0.27

0.38

-0.97

-1.02

0.28

模型②

26.84

20.17

18.83

17.31

16.46

-1.84

0.83

3.17

-1.31

-2.46

1)将以上表格补充完整,并根据残差平方和判断哪个模型拟合效果更好;

2)视残差的绝对值超过1.5的数据视为异常数据,针对(1)中拟合效果较好的模型,剔除异常数据后,重新求回归方程.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,求函数的最大值;

2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;

3)当,方程有唯一实数解,求正数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥CABNM中,四边形ABNM的边长均为2,△ABC为正三角形,MBMBNCEF分别为MNAC中点.

(Ⅰ)证明:MBAC

(Ⅱ)求直线EF与平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在疫情这一特殊时期,教育行政部门部署了停课不停学的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:

)是否有的把握认为高三学生的这次摸底考试数学成绩与其在线学习时长有关

)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知lm是平面外的两条不同直线.给出下列三个论断:

lmml

以其中的两个论断作为条件,余下的一个论断作为结论,则三个命题中正确命题的个数为( )个.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形是正方形,四边形是梯形,,且,平面平面ABC.

1)求证:平面平面

2)若,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请从下面三个条件中任选一个,补充在下面的横线上,并作答.

ABBC,②FC与平面ABCD所成的角为,③∠ABC

如图,在四棱锥PABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PAAB2,,PD的中点为F

1)在线段AB上是否存在一点G,使得AF平面PCG?若存在,指出GAB上的位置并给以证明;若不存在,请说明理由;

2)若_______,求二面角FACD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(其中mn为常数)

1)当时,对恒成立,求实数n的取值范围;

2)若曲线处的切线方程为,函数的零点为,求所有满足的整数k的和.

查看答案和解析>>

同步练习册答案