精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右焦点分别为,过任作一条与坐标轴都不垂直的直线,与交于两点,且的周长为.当直线的斜率为时,轴垂直

(1)求椭圆的方程

(2)若是该椭圆上位于第一象限的一点,过作圆的切线,切点为,求的值;

(3)设为定点,直线过点轴交于点,且与椭圆交于两点,设,求的值

【答案】(1);(2);(3)

【解析】

1)根据椭圆定义可求得;再利用斜率得到,利用的关系求得结果;(2)假设,利用两点间距离公式表示出;再利用直角三角形求解出切线长,作差得到结果;(3)假设直线两点坐标,利用向量关系表示出,将直线代入椭圆方程,利用韦达定理表示出,整理得到结果.

1的周长为

根据椭圆定义可知:

斜率为时:

可得:

椭圆的方程

2)设,则

连接,由相切条件知:

3)由题意可知直线的斜率存在且不为,设直线的方程为

,可得,则

,则

,可得,即

,代入椭圆中,可得:

由韦达定理得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f1(x)=Asin(ωxφ)(A>0,ω>0,|φ|<)的一段图象过点(0,1),如图所示.

(1)求函数f1(x)的表达式;

(2)将函数yf1(x)的图象向右平移个单位,得函数yf2(x)的图象,求yf2(x)的最大值,并求出此时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;

(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?

(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潮汐是发生在沿海地区的一种自然现象,其形成是海水受日月的引力.潮是指海水在一定的时候发生涨落的现象.一般来说,早潮叫潮,晚潮叫汐.某观测站通过长时间的观测,其发现潮汐的涨落规律和函数图象基本一致且周期为,其中为时间,为水深.时,海水上涨至最高5.

1)作出函数内的图象,并求出潮汐涨落的频率和初相;

2)求海水水深持续加大的时间区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的单调递减的概率;

2)当且为整数时,求二次函数有两个零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:

①骑自行车者比骑摩托车者早出发3 h,晚到1 h

②骑自行车者是变速运动,骑摩托车者是匀速运动;

③骑摩托车者在出发1.5 h后追上了骑自行车者;

④骑摩托车者在出发1.5 h后与骑自行车者速度一样.

其中,正确信息的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若曲线与曲线在它们的某个交点处具有公共切线,求的值;

(Ⅱ)若存在实数使不等式的解集为,求实数的取值范围

(Ⅲ)若方程有三个不同的解,且它们可以构成等差数列,写出实数的值(只需写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左右焦点,左右顶点为是双曲线上任意一点,则分别以线段为直径的两圆的位置关系为( )

A. 相交B. 相切C. 相离D. 以上情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们称一个非负整数集合(非空)为好集合,若对任意,或者,或者.以下记的元素个数.

给出所有的元素均小于的好集合;(给出结论即可)

求出所有满足的好集合;(同时说明理由)

若好集合满足,求证: 中存在元素,使得中所有元素均为的整数倍.

查看答案和解析>>

同步练习册答案