【题目】有件产品,其中件是次品,其余都是合格品,现不放回的从中依次抽件.求:(1)第一次抽到次品的概率;
(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的条件下,第二次抽到次品的概率.
科目:高中数学 来源: 题型:
【题目】我们学习了二元基本不等式:设,,,当且仅当时,等号成立利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值.
(1)对于三元基本不等式请猜想:设 当且仅当时,等号成立(把横线补全).
(2)利用(1)猜想的三元基本不等式证明:
设求证:
(3)利用(1)猜想的三元基本不等式求最值:
设求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)为增函数,当x,y∈R时,恒有f(x+y)=f(x)+f(y)
(1)求证:f(x)是奇函数.
(2)是否存在m,使,对于任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数是定义在R上的函数,对任意实数x,有f(1﹣x)=x2﹣3x+3.
(1)求函数的解析式;
(2)若函数在g(x)=f(x)﹣(1+2m)x+1(m∈R)在上的最小值为﹣2,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为。
(1)记甲击中目标的次数为,求的概率分布及数学期望;
(2)求乙至多击目标2次的概率;
(3)求甲恰好比乙多击中目标2次的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下有四个说法:
①若、为互斥事件,则;
②在中,,则;
③和的最大公约数是;
④周长为的扇形,其面积的最大值为;
其中说法正确的个数是( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为时的销售价格.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定直线l:y=x+3,定点A(2,1),以坐标轴为对称轴的椭圆C过点A且与l相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)椭圆的弦AP,AQ的中点分别为M,N,若MN平行于l,则OM,ON斜率之和是否为定值?若是定值,请求出该定值;若不是定值请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com