【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
支持 | 不支持 | 合计 | |
年龄不大于50岁 | 80 | ||
年龄大于50岁 | 10 | ||
合计 | 70 | 100 |
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附: , ,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)见解析;(2)不超过5%的前提下认为不同年龄与支持申办奥运有关;(3)
【解析】
(1)根据表中的合计人数,就可以得出答案。
(2)由表中数据,按照公式可以算出的值,可以得出答案。
(3)从5人任意抽3人的所有等可能事件有:共10个,其中至多1位教师,有7个基本事件,所以所求概率是.
(1)
支持 | 不支持 | 合计 | |
年龄不大于50岁 | 20 | 60 | 80 |
年龄大于50岁 | 10 | 10 | 20 |
合计 | 30 | 70 | 100 |
(2) ,
所以能在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关;
(3)记5人为 ,其中表示教师,从5人任意抽3人的所有等可能事件是:共10个,其中至多1位教师有7个基本事件: ,所以所求概率是.
科目:高中数学 来源: 题型:
【题目】2017年被称为“新高考元年”,随着上海、浙江两地顺利实施“语数外+3”新高考方案,新一轮的高考改革还将继续在全国推进。辽宁地区也将于2020年开启新高考模式,今年秋季入学 的高一新生将面临从物理、化学、生物、政治、历史、地理等6科中任选三科(共20种选法)作为 自己将来高考“语数外+3 ”新高考方案中的“3”。某地区为了顺利迎接新高考改革,在某学校理科班的200名学生中进行了“学生模拟选科数据”调查,每个学生只能从表格中的20种课程 组合选择一种学习。模拟选课数据统计如下表:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
组合学科 | 物化生 | 物化政 | 物化历 | 物化地 | 物生政 | 物生历 | 物生地 |
人数 | 20人 | 5人 | 10人 | 10人 | 10人 | 15人 | 10人 |
序号 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
组合学科 | 物政历 | 物政地 | 物历地 | 化生政 | 化生历 | 化生地 | 化政历 |
人数 | 5人 | 0人 | 5人 | ... | 40人 | ... | ... |
序号 | 15 | 16 | 17 | 18 | 19 | 20 | |
组合学科 | 化政地 | 化历地 | 生政历 | 生政地 | 生历地 | 政历地 | 总计 |
人数 | ... | ... | ... | ... | ... | ... | 200人 |
为了解学生成绩与学生模拟选课情之间的关系,用分层抽样的方法从这200名学生中抽取40人的样本进行分析.
(1)样本中选择组合12号“化生历”的有多少人?样本中选择学习物理的有多少人?
(2)从样本选择学习地理且学习物理的学生中随机抽取3人,求这3人中至少有1人还要学习生物的概率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某教育主管部门到一所中学检查高三年级学生的体质健康情况,从中抽取了名学生的体质测试成绩,得到的频率分布直方图如图1所示,样本中前三组学生的原始成绩按性别分类所得的茎叶图如图2所示.
(Ⅰ)求, , 的值;
(Ⅱ)估计该校高三学生体质测试成绩的平均数和中位数;
(Ⅲ)若从成绩在的学生中随机抽取两人重新进行测试,求至少有一名男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,,∠ABC=∠BCD=90°,E为PB的中点。
(1)证明:CE∥面PAD.
(2)若直线CE与底面ABCD所成的角为45°,求四棱锥P-ABCD的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了贯彻落实中央省市关于新型冠状病毒肺炎疫情防控工作要求,积极应对新型冠状病毒疫情,切实做好2020年春季开学工作,保障校园安全稳定,普及防控知识,确保师生生命安全和身体健康.某校开学前,组织高三年级800名学生参加了“疫情防控”网络知识竞赛(满分150分).已知这800名学生的成绩均不低于90分,将这800名学生的成绩分组如下:第一组,第二组,第三组,第四组,第五组,第六组,得到的频率分布直方图如图所示.
(1)求的值并估计这800名学生的平均成绩(同一组中的数据用该组区间的中点值代表);
(2)该校“群防群控”督查组为更好地督促高三学生的“个人防控”,准备从这800名学生中取2名学生参与督查工作,其取办法是:先在第二组第五组第六组中用分层抽样的方法抽取6名学生,再从这6名学生中随机抽取2名学生.记这2名学生的竞赛成绩分别为.求事件的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com