【题目】已知.
(Ⅰ)当时,求的极值;
(Ⅱ)若有2个不同零点,求的取值范围.
【答案】(1),; (2).
【解析】
(Ⅰ)求出函数的导数,求其零点,根据零点分析各区间导数的正负,即可求出极值(Ⅱ)根据,分类讨论,分别分析当时,当时,当时导函数的零点,根据零点分析函数的极值情况.
(Ⅰ)当时 ,
令得,,,为增函数,
, ,,为增函数
∴,.
(Ⅱ)
当时,,只有个零点;
当时,
,,为减函数,,,为增函数
而,∴当,,使,
当时,∴ ∴,∴
取,∴ ,∴函数有个零点,
当时,,令得,
①,即时,当变化时 ,变化情况是
∴,∴函数至多有一个零点,不符合题意;
②时,,在单调递增,∴至多有一个零点,不合题意,
③当时,即以时,当变化时,的变化情况是
∴,时,,,∴函数至多有个零点,
综上:的取值范围是.
科目:高中数学 来源: 题型:
【题目】某单位共有10名员工,他们某年的收入如下表:
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求该单位员工当年年薪的平均值和中位数;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?
附:线性回归方程中系数计算公式分别为:,,其中、为样本均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)记函数的图象为曲线.设点,是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”.试问:函数是否存在“中值相依切线”,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:(a>b>0)过点,离心率为.
(1)求椭圆C的方程;
(2)若斜率为的直线l与椭圆C交于A,B两点,试探究是否为定值?若是定值,则求出此定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为.
求曲线C的直角坐标方程与直线l的极坐标方程;
Ⅱ若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月18日-27日,第七届世界军人运动会在湖北武汉举办,中国代表团共获得133金64银42铜,共239枚奖牌.为了调查各国参赛人员对主办方的满意程度,研究人员随机抽取了500名参赛运动员进行调查,所得数据如下所示,现有如下说法:①在参与调查的500名运动员中任取1人,抽到对主办方表示满意的男性运动员的概率为;②在犯错误的概率不超过1%的前提下可以认为“是否对主办方表示满意与运动员的性别有关”;③没有99.9%的把握认为“是否对主办方表示满意与运动员的性别有关”;则正确命题的个数为( )附:
男性运动员 | 女性运动员 | |||||
对主办方表示满意 | 200 | 220 | ||||
对主办方表示不满意 | 50 | 30 | ||||
0.100 | 0.050 | 0.010 | 0.001 | |||
k | 2.706 | 3.841 | 6.635 | 10.828 | ||
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com