精英家教网 > 高中数学 > 题目详情

【题目】(本小题14分)

如图在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD平面ABCDPAPDPA=PDEF分别为ADPB的中点.

(Ⅰ)求证:PEBC

(Ⅱ)求证:平面PAB平面PCD

(Ⅲ)求证:EF平面PCD.

【答案】见解析

见解析

见解析

【解析】分析:(1)欲证,只需证明即可;(2)先证平面,再证平面PAB平面PCD;(3)取中点,连接,证明,则平面.

详解:

)∵,且的中点,∴.

∵底面为矩形,∴

.

Ⅱ)∵底面为矩形,∴.

平面平面,∴平面.

.,

平面,∴平面平面.

Ⅲ)如图,取中点,连接.

分别为的中点,∴,且.

∵四边形为矩形,且的中点,

,且,∴四边形为平行四边形,

.

平面平面

平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.

(1)求样本容量和抽取的高中生近视人数分别是多少?

(2)在抽取的名高中生中,平均每天学习时间超过9小时的人数为,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:

平均学习时间不超过9小时

平均学习时间超过9小时

总计

不近视

近视

总计

(3)根据(2)中的列联表,判断是否有的把握认为高中生平均每天学习时间与近视有关?

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018101日起,中华人民共和国个人所得税新规定,公民月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:

全月应纳税所得额

税率

不超过1500元的部分

3

超过1500元不超过4500元的部分

10

超过4500元不超过9000元的部分

20

超过9000元不超过35000

25

如果小李10月份全月的工资、薪金为7000元,那么他应该纳税多少元?

如果小张10月份交纳税金425元,那么他10月份的工资、薪金是多少元?

写出工资、薪金收入与应缴纳税金的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在几何体中,四边形是边长为的正方形,且平面,且与平面所成角的正切值为.

(1)求证:平面平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数.

(1)若曲线在点处的切线方程为,试求函数的单调区间;

(2)当,且时,若恒有,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对一块长米,宽米的矩形场地ABCD进行改造,点E为线段BC的中点,点F在线段CDAD上(异于AC),设(单位:米),的面积记为(单位:平方米),其余部分面积记为(单位:平方米).

1)求函数的解析式;

2)设该场地中部分的改造费用为(单位:万元),其余部分的改造费用为(单位:万元),记总的改造费用为W单位:万元),求W最小值,并求取最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,为边的中点,将沿直线翻折成.若为线段的中点,则在翻折过程中,下面四个命题中不正确的是(

A. 是定值

B. 在某个球面上运动

C. 存在某个位置,使

D. 存在某个位置,使平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为4的正方形,侧面为正三角形且二面角

(Ⅰ)设侧面的交线为,求证:

(Ⅱ)设底边与侧面所成角的为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线的参数方程为为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系中,直线的极坐标方程为

1)求出线的极坐标方程及直线的直角坐标方程;

2)设点为曲线上的任意一点,求点到直线的距离最大值.

查看答案和解析>>

同步练习册答案