7£®ÒÑÖªÕýÊýÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Âú×ãan=£¨$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£©£¨n¡Ý2£¬n¡ÊN*£©£¬a1=1£®
£¨¢ñ£©ÇóÖ¤£º{$\sqrt{S_n}\}$ÊǵȲîÊýÁУ»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©Áîbn=$\frac{4n}{{a_n^2•a_{n+1}^2}}$£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬ÇóʹµÃTn£¼$\frac{m}{10}$¶ÔÓÚËùÓÐn¡ÊN*¶¼³ÉÁ¢µÄ×îСÕýÕûÊým£®

·ÖÎö £¨I£©ÓÉan=£¨$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£©£¨n¡Ý2£¬n¡ÊN*£©£¬¿ÉµÃSn-Sn-1=£¨$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£©£¨n¡Ý2£¬n¡ÊN*£©£¬ÓÖÕýÊýÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬¿ÉµÃ$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1£¬¼´¿ÉÖ¤Ã÷£®
£¨II£©ÓÉ£¨I£©¿ÉµÃ£º$\sqrt{{S}_{n}}$=1+£¨n-1£©=n£¬Sn=n2£®ÀûÓÃan=Sn-Sn-1¼´¿ÉµÃ³ö£®
£¨III£©ÀûÓá°ÁÑÏîÇóºÍ¡±·½·¨¡¢ÊýÁеĵ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð £¨I£©Ö¤Ã÷£º¡ßan=£¨$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£©£¨n¡Ý2£¬n¡ÊN*£©£¬
¡àSn-Sn-1=£¨$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£©£¨n¡Ý2£¬n¡ÊN*£©£¬
ÓÖÕýÊýÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬¡à$\sqrt{S_n}+\sqrt{{S_{n-1}}}$£¾0£®
¡à$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1£¬
¡à{$\sqrt{S_n}\}$ÊǵȲîÊýÁУ¬¹«²îΪ1£¬Ê×ÏîΪ1£®
£¨II£©½â£ºÓÉ£¨I£©¿ÉµÃ£º$\sqrt{{S}_{n}}$=1+£¨n-1£©=n£¬
¡àSn=n2£®
¡àan=Sn-Sn-1=n2-£¨n-1£©2=2n-1£®
£¨III£©½â£ºbn=$\frac{4n}{{a_n^2•a_{n+1}^2}}$=$\frac{4n}{£¨2n-1£©^{2}£¨2n+1£©^{2}}$=$\frac{1}{2}[\frac{1}{£¨2n-1£©^{2}}-\frac{1}{£¨2n+1£©^{2}}]$£¬
¡àÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn=$\frac{1}{2}$$[£¨1-\frac{1}{{3}^{2}}£©+£¨\frac{1}{{3}^{2}}-\frac{1}{{5}^{2}}£©$+¡­+$£¨\frac{1}{£¨2n-1£©^{2}}-\frac{1}{£¨2n+1£©^{2}}£©]$
=$\frac{1}{2}[1-\frac{1}{£¨2n+1£©^{2}}]$$£¼\frac{1}{2}$£¬
¡àʹµÃTn£¼$\frac{m}{10}$¶ÔÓÚËùÓÐn¡ÊN*¶¼³ÉÁ¢£¬Ôò$\frac{1}{2}¡Ü\frac{m}{10}$£¬½âµÃm¡Ý5£®
Òò´ËʹµÃTn£¼$\frac{m}{10}$¶ÔÓÚËùÓÐn¡ÊN*¶¼³ÉÁ¢µÄ×îСÕýÕûÊým=5£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁеĵÝÍƹØϵ¡¢¡°ÁÑÏîÇóºÍ·½·¨¡±¡¢µÈ²îÊýÁеÄͨÏʽ¡¢ÊýÁеĵ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄê½­Î÷¼ª°²Ò»Öи߶þÉ϶ο¼Ò»Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

Ô²µÄÔ²ÐÄ×ø±êºÍ°ë¾¶·Ö±ðΪ£¨ £©

A£®£¨0,2£©£¬2 B£®£¨2,0£©£¬2 C£®£¨-2,0£©£¬4 D£®£¨2,0£©£¬4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®´Ó2ÄÐ3Å®¹²5ÃûͬѧÖÐÈÎÑ¡2Ãû£¨Ã¿Ãûͬѧ±»Ñ¡ÖеĻú»á¾ùµÈ£©£¬Õâ2Ãû¶¼ÊÇÄÐÉú»ò¶¼ÊÇÅ®ÉúµÄ¸ÅÂʵÈÓÚ$\frac{2}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÈôA£¬B£¬C³ÉµÈ²îÊýÁУ¬ÇÒb=1£¬Ôò¡÷ABCÃæ»ýµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{2}$B£®$\frac{{\sqrt{3}}}{2}$C£®$\frac{{\sqrt{3}}}{4}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èôx1£¬x2ÊǺ¯Êýf£¨x£©=x2+ax+b£¨a£¼0£¬b£¾0£©µÄÁ½¸ö²»Í¬µÄÁãµã£¬ÇÒx1£¬-2£¬x2³ÉµÈ±ÈÊýÁУ¬ÈôÕâÈý¸öÊýÖØÐÂÅÅÐòºó³ÉµÈ²îÊýÁУ¬Ôòa+bµÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®1B£®-1C£®9D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®º¯Êýy=$\sqrt{3}$sin2x-cos2xµÄͼÏó¿ÉÓɺ¯Êýy=2sin2xµÄͼÏóÖÁÉÙÏòÓÒƽÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶ÈµÃµ½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=-\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=8cos¦È£®
£¨1£©ÇóÔ²ÐÄCµÄÖ±½Ç×ø±ê£»
£¨2£©ÈôÖ±ÏßlÓëÔ²CÏཻÓÚA£¬BÁ½µã£¬µãPµÄÖ±½Ç×ø±êΪ£¨0£¬2£©£¬Çó|PA|+|PB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªz=£¨2-i£©2£¨iΪÐéÊýµ¥Î»£©£¬Ôò¸´ÊýzµÄÐ鲿Ϊ-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚÇø¼ä£¨-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$£©ÉÏËæ»úµØÈ¡Ò»¸öÊýx£¬Ôòʼþ¡°tanx¡Ý$\sqrt{3}$¡±·¢ÉúµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{3}$C£®$\frac{2}{3}$D£®$\frac{5}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸