精英家教网 > 高中数学 > 题目详情
5.若直线$y=kx+\sqrt{2}$与圆x2+y2=1没有公共点,则此直线倾斜角α的取值范围是[0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π).

分析 利用直线$y=kx+\sqrt{2}$与圆x2+y2=1没有公共点,可得圆心到直线的距离大于半径,即可得出结论.

解答 解:∵直线$y=kx+\sqrt{2}$与圆x2+y2=1没有公共点,
∴$\frac{\sqrt{2}}{\sqrt{{k}^{2}+1}}$>1,
∴k∈(-1,1),
∴α∈[0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π).
故答案为:[0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π).

点评 本题主要考查了直线与圆的位置关系,考查直线斜率与倾斜角的关系,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图叶茎图记录了甲、乙两组各6名学生在一次数字测试中的成绩(单位:分),已知甲组数据的众数为84,乙组数据的平均数即为甲组数据的中位数,则x,y的值分别为(  )
A.4,5B.5,4C.4,4D.5,5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足首项a1=2,an=2an-1+2n(n≥2).
(Ⅰ)证明:{$\frac{{a}_{n}}{{2}^{n}}$}为等差数列并求{an}的通项公式;
(Ⅱ)数列{bn}满足bn=log${\;}_{\sqrt{2}}$$\frac{{a}_{n}}{n}$,记数列{$\frac{1}{{b}_{n}•{b}_{n+1}}$}的前n项和为Tn,设角B是△ABC的内角,若sinBcosB>Tn,对于任意n∈N+恒成立,求角B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算($\frac{8}{125}$)${\;}^{-\frac{2}{3}}$-lg$\sqrt{2}$-lg$\sqrt{5}$的结果为$\frac{23}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.抛物线y2=4x上横坐标为3的点P到焦点F的距离为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公园内直线道路旁有一半径为10米的半圆形荒地(圆心O在道路上,AB为直径),现要在荒地的基础上改造出一处景观.在半圆上取一点C,道路上B点的右边取一点D,使OC垂直于CD,且OD的长不超过20米.在扇形区域AOC内种植花卉,三角形区域OCD内铺设草皮.已知种植花卉的费用每平方米为200元,铺设草皮的费用每平方米为100元.
(1)设∠COD=x(单位:弧度),将总费用y表示为x的函数式,并指出x的取值范围;
(2)当x为何值时,总费用最低?并求出最低费用.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将正弦曲线y=sinx上所有的点向右平移$\frac{2}{3}$π个单位长度,再将图象上所有点的横坐标变为原来的$\frac{1}{3}$倍(纵坐标不变),则所得到的图象的函数解析式y=$sin(3x-\frac{2π}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}中,已知a1=1,若${a_n}-{a_{n-1}}=2(n≥2且n∈{N^*})$,则an=2n-1,若$\frac{a_n}{{{a_{n-1}}}}=2(n≥2且n∈{N^*})$,则an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为4cm,则一质点自点A出发,沿着三棱柱的侧面,绕行两周到达点A1的最短路线的长为(  )
A.4$\sqrt{10}$cmB.12$\sqrt{3}$cmC.2$\sqrt{13}$cmD.13cm

查看答案和解析>>

同步练习册答案