【题目】在平面直角坐标系xoy中,曲线C1是以C1(3,1)为圆心, 为半径的圆.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线C2:ρsinθ﹣ρcosθ=1.
(1)求曲线C1的参数方程与直线C2的直角坐标方程;
(2)直线C2与曲线C1相交于A,B两点,求△ABC1的周长.
科目:高中数学 来源: 题型:
【题目】某同学为研究函数 的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的值域是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m>1,直线l:x﹣my﹣ =0,椭圆C: +y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2 , △BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是公差为2的等差数列,数列{bn}满足 ,若n∈N*时,anbn+1﹣bn+1=nbn .
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设 ,求{Cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥平面ABC,且D,E分别是棱A1B1 , A1A1的中点,点F在棱AB上,且AF= AB.
(1)求证:EF∥平面BDC1;
(2)求三棱锥D﹣BEC1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aex﹣2x﹣2a,且a∈[1,2],设函数f(x)在区间[0,ln2]上的最小值为m,则m的取值范围是( )
A.[﹣2,﹣2ln2]
B.[﹣2,﹣ ]
C.[﹣2ln2,﹣1]
D.[﹣1,﹣ ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ=a(a>0),Q为l上一点,以OQ为边作等边三角形OPQ,且O、P、Q三点按逆时针方向排列.
(Ⅰ)当点Q在l上运动时,求点P运动轨迹的直角坐标方程;
(Ⅱ)若曲线C:x2+y2=a2 , 经过伸缩变换 得到曲线C′,试判断点P的轨迹与曲线C′是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|ax﹣1|,若实数a>0,不等式f(x)≤3的解集是{x|﹣1≤x≤2}.
(Ⅰ)求a的值;
(Ⅱ)若 <|k|存在实数解,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com