精英家教网 > 高中数学 > 题目详情
17.在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6名选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图,为了增加结果的神秘感,主持人故意没有给出甲、乙两班最后一位选手的成绩,只是告诉大家,如果某位选手的成绩高于90分(不含90分),则直接“晋级”
(Ⅰ)求乙班总分超过甲班的概率
(Ⅱ)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分
①请你从平均分光和方差的角度来分析两个班的选手的情况;
②主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为ξ,求ξ的分布列及数学期望.

分析 (Ⅰ)先分别求出甲班前5位选手的总分和乙班前5位选手的总分,由此利用列举法能求出乙班总分超过甲班的概率.
(Ⅱ)①分别求出甲、乙两班平均分和方差,由此能求出甲班选手间的实力相当,相差不大,乙班选手间实力悬殊,差距较大.
②ξ的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).

解答 解:(Ⅰ)甲班前5位选手的总分为88+89+90+91+92=450,
乙班前5位选手的总分为82+84+92+91+94=443,
若乙班总分超过甲班,则甲、乙两班第六位选手的成绩可分别为:
(90,98),(90,99),(91,99),共三个,
∴乙班总分超过甲班的概率为p=$\frac{3}{10×10}$=$\frac{3}{100}$.
(Ⅱ)①甲班平均分为$\overline{{x}_{甲}}$=$\frac{1}{6}$(88+89+90+91+92+90)=90,
乙班平均数为$\overrightarrow{{x}_{乙}}$=$\frac{1}{6}$(82+84+92+91+94+97)=90,
甲班方差为S2=$\frac{1}{6}$(22+12+12+22)=$\frac{5}{3}$,
乙班方差为S2=$\frac{1}{6}$(82+62+22+12+42+72)=$\frac{85}{3}$,
两班的平均分相同,但甲班选手的方差小于乙班,
故甲班选手间的实力相当,相差不大,乙班选手间实力悬殊,差距较大.
②ξ的可能取值为0,1,2,3,4,
P(ξ=0)=$\frac{{C}_{4}^{2}{C}_{2}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{6}{225}$,
P(ξ=1)=$\frac{{C}_{2}^{1}{C}_{4}^{1}{C}_{2}^{2}+{C}_{4}^{2}{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{56}{225}$,
P(ξ=2)=$\frac{{C}_{2}^{1}{C}_{4}^{1}{C}_{4}^{1}{C}_{2}^{1}+{C}_{4}^{2}{C}_{4}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{101}{225}$,
P(ξ=3)=$\frac{{C}_{2}^{2}{C}_{4}^{1}{C}_{2}^{1}+{C}_{2}^{1}{C}_{4}^{1}{C}_{4}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{56}{225}$,
P(ξ=4)=$\frac{{C}_{2}^{2}{C}_{4}^{2}}{{C}_{6}^{2}{C}_{6}^{2}}$=$\frac{6}{225}$,
∴ξ的分布列为:

 ξ 0 1 2 3 4
 P $\frac{6}{225}$ $\frac{56}{225}$ $\frac{101}{225}$ $\frac{56}{225}$ $\frac{6}{225}$
∴E(ξ)=$0×\frac{6}{225}+1×\frac{56}{225}+2×\frac{101}{225}+3×\frac{56}{225}+4×\frac{6}{225}$=2.

点评 本题考查茎叶图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知平面向量$|{\overrightarrow α}|=|{\overrightarrow β}|=\sqrt{3}$且$\overrightarrow α$与 $\overrightarrow β-\overrightarrow α$的夹角为150°,则$|{t\overrightarrow α+\frac{1-t}{2}\overrightarrow β}|$(t∈R)的取值范围是[$\frac{3\sqrt{7}}{14}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.完成下列抽样调查,较为合理的抽样方法依次是(  )
①从30件产品中抽取3件进行检查.
②某校高中三个年级共有2460人,其中高一890人、高二820人、高三810人,为了了解学生对数学的建议,拟抽取一个容量为300的样本;
③某剧场有28排,每排有32个座位,在一次报告中恰好坐满了听众,报告结束后,为了了解听众意见,需要请28名听众进行座谈.
A.①简单随机抽样,②系统抽样,③分层抽样
B.①分层抽样,②系统抽样,③简单随机抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①简单随机抽样,②分层抽样,③系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数z的共轭复数为$\overline{z}$,若z=1-i(i为虚数单位),则复数$\frac{\overline{z}}{z}$+z2+|z|在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知ω>0,在函数y=4sinωx与y=4cosωx的图象的交点中,距离最近的两个交点的距离为6,则ω的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆锥的母线长为5cm,高为4cm,求这个圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(1,x-1),$\overrightarrow{b}$=(y,2),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则xy的最大值为(  )
A.-$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC是边长为2的正三角形,那么它的平面直观图△A′B′C′的面积为$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.集合A={x||x|≤4,x∈R},B={x|x<a},则“A⊆B”是“a>5”的必要不充分条件(在“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中选择一项填空)

查看答案和解析>>

同步练习册答案