1£®ÈôÊýÁÐ{An}£ºa1£¬a2£¬¡­£¬an£¨n¡Ý2£©Âú×ã|ak+1-ak|=1£¨k=1£¬2£¬3£¬¡­£¬n-1£©£¬ÊýÁÐAnΪGÊýÁУ¬¼ÇS£¨An£©=a1+a2+¡­+an£®
£¨1£©Ð´³öÒ»¸öÂú×ãa1=a7=0£¬ÇÒS£¨A7£©£¾0µÄGÊýÁÐAn£»
£¨2£©Èôa1=2£¬n=2016£¬Ö¤Ã÷£ºGÊýÁÐAnÊǵÝÔöÊýÁеijäÒªÌõ¼þÊÇan=2017£»
£¨3£©¶ÔÈÎÒâ¸ø¶¨µÄÕûÊýn£¨n¡Ý2£©£¬ÊÇ·ñ´æÔÚÊ×ÏîΪ0µÄGÊýÁÐAn£¬Ê¹µÃS£¨An£©=0£¿Èç¹û´æÔÚ£¬Ð´³öÒ»¸öÂú×ãÌõ¼þµÄGÊýÁÐAn£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒ⣬a1=a7=0£¬a2=1£¬a3=2£¬ÔÙ¸ù¾Ý|ak+1-ak|=1Çó³ö·ûºÏÌâÉèµÄGÊýÁÐA7£»
£¨2£©¿ÉÏÈÖ¤Ã÷±ØÒªÐÔ£ºÓɵÝÔöÊýÁеĶ¨Ò壬µÃµ½AnÊÇÊ×ÏîΪ2£¬¹«²îΪ1µÄµÈ²îÊýÁУ®´Ó¶øÓÐa2016=
2017£»ÔÙÖ¤³ä·ÖÐÔ£ºÓÉж¨ÒåÍƳöa2016¡Üa1+2015£¬ÓÖÒòΪa1=2£¬a2016=2017£¬ËùÒÔa2016=a1+2015£®µÃÖ¤£»
£¨3£©Áîck=ak+1-ak£¬·Ö±ðÇóµÃa2£¬a3£¬a4£¬¡­£¬an£¬ÓÉS£¨An£©=a1+a2+a3+¡­+an£¬ÇóµÃS£¨An£©£¬ÓÉck=¡À1£¬1-ckΪżÊý£¬¿ÉµÃn=4m£¬»òn=4m+1£¨m¡ÊN*£©£¬·Ö±ðÇóµÃGÊýÁÐAn£¬Âú×ãS£¨An£©=0µÄ±í´ïʽ£®

½â´ð ½â£º£¨1£©GÊýÁÐ{An}£º0£¬1£¬2£¬1£¬2£¬1£¬0£»
£¨2£©Ö¤Ã÷£º±ØÒªÐÔ£ºÒòΪGÊýÁÐAnÊǵÝÔöÊýÁУ¬
ËùÒÔak+1-ak=1£¨k=1£¬2£¬¡­£¬2015£©£®            
ËùÒÔA2016ÊÇÊ×ÏîΪ2£¬¹«²îΪ1µÄµÈ²îÊýÁУ®
ËùÒÔa2016=2+£¨2016-1£©¡Á1=2017£®
³ä·ÖÐÔ£ºÓÉÓÚa2016-a2015¡Ü1£¬
a2015-a2014¡Ü1
¡­
a2-a1¡Ü1£¬
ËùÒÔa2016-a1¡Ü2015£¬¼´a2016¡Üa1+2015£¬
ÓÖÒòΪa1=2£¬a2016=2017£¬
ËùÒÔa2016=a1+2015£®
¹Êan+1-an=1£¾0£¨k=1£¬2£¬¡­£¬2015£©¼´AnÊǵÝÔöÊýÁУ®
×ÛÉÏ£¬½áÂÛµÃÖ¤£»
£¨3£©Áîck=ak+1-ak£¨k=1£¬2£¬¡­£¬n-1£©£¬Ôòck=¡À1£¬ÓÚÊÇÓÉa1=0£¬
µÃa2=c1£¬
a3=a2+c2=c1+c2£¬
a4=a3+c3=c1+c2+c3£¬
¡­
an=an-1+cn-1=c1+c2+¡­+cn-1£¬
¹ÊS£¨An£©=a1+a2+a3+¡­+an£¬
=£¨n-1£©c1+£¨n-2£©c2+£¨n-3£©c3+¡­+2cn-2+cn-1£¬
=[£¨n-1£©+£¨n-2£©+£¨n-3£©+¡­+2+1]+£¨n-1£©£¨c1-1£©
+£¨n-2£©£¨c2-1£©+£¨n-3£©£¨c3-1£©+¡­+2£¨cn-2-1£©+£¨cn-1-1£©£¬
=$\frac{n£¨n-1£©}{2}$-[£¨n-1£©£¨1-c1£©+£¨n-2£©£¨1-c2£©+£¨n-3£©£¨1-c3£©+¡­+2£¨1-cn-2£©+£¨1-cn-1£©]£®
Òòck=¡À1£¬¹Ê1-ck£¨k=1£¬2£¬¡­£¬n-1£©ÎªÅ¼Êý£¬
ËùÒÔ£¨n-1£©£¨1-c1£©+£¨n-2£©£¨1-c2£©+£¨n-3£©£¨1-c3£©+¡­+2£¨1-cn-2£©+£¨1-cn-1£©ÎªÅ¼Êý£®
ÓÚÊÇҪʹS£¨An£©=0£¬±ØÐë$\frac{n£¨n-1£©}{2}$ΪżÊý£¬
¼´n£¨n-1£©Îª4µÄ±¶Êý£¬Ò༴n=4m£¬»òn=4m+1£¨m¡ÊN*£©£®
£¨ i£©µ±n=4m£¨m¡ÊN*£©Ê±£¬GÊýÁÐAnµÄÏî´æÔÚÂú×㣺a4k-1=a4k-3=0£¬a4k-2=1£¬a4k=-1£¨k=1£¬2£¬¡­£¬m£©Ê±£¬S£¨An£©=0£®
£¨ ii£©µ±n=4m+1£¨m¡ÊN*£©Ê±£¬GÊýÁÐAnµÄÏî´æÔÚÂú×㣺a4k-1=a4k-3=0£¬a4k-2=1£¬a4k=-1£¨k=1£¬2£¬¡­£¬m£©£¬a4m+1=0ʱS£¨An£©=0£®

µãÆÀ ±¾Ì⿼²éж¨Òå¼°Àí½â£¬¿¼²éµÈ²îÊýÁÐÇ°nÏîºÍ¹«Ê½¼°ÊýÁеÄ×ÛºÏÔËÓ㬽âÌâµÄ¹Ø¼üÔÚÓÚ¶Ôж¨ÒåµÄÕýÈ·ÔËÓã¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¹Û²ìÏÂÁв»µÈʽ£º$\sqrt{1•2}£¼\frac{3}{2}$£¬$\sqrt{1•2}+\sqrt{2•3}$£¼4£¬$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}£¼\frac{15}{2}$£¬
$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+\sqrt{4•5}$£¼12£¬¡­
Õմ˹æÂÉ£¬µÚn¸ö²»µÈʽΪ$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+¡­+\sqrt{n£¨n+1£©}£¼\frac{n£¨n+2£©}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁÐֵΪ2µÄ»ý·ÖÊÇ£¨¡¡¡¡£©
A£®$\int_0^5{£¨{2x-4}£©dx}$B£®$\int_0^¦Ð{cosxdx}$C£®$\int_1^3{\frac{1}{x}dx}$D£®$\int_0^¦Ð{sinxdx}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÅ×ÎïÏßC£ºy2=4x£¬Ö±Ïßx=ny+4ÓëÅ×ÎïÏßC½»ÓÚA£¬BÁ½µã£®
£¨¢ñ£©ÇóÖ¤£º$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¨ÆäÖÐOΪ×ø±êÔ­µã£©£»
£¨¢ò£©ÉèFΪÅ×ÎïÏßCµÄ½¹µã£¬Ö±Ïßl1ΪÅ×ÎïÏßCµÄ×¼Ïߣ¬Ö±Ïßl2ÊÇÅ×ÎïÏßCµÄͨ¾¶ËùÔÚµÄÖ±Ïߣ¬¹ýCÉÏÒ»µãP£¨x0£¬y0£©£¨y0¡Ù0£©×÷Ö±Ïßl£ºy0y=2£¨x+x0£©ÓëÖ±Ïßl2ÏཻÓÚµãM£¬ÓëÖ±Ïßl1ÏཻÓÚµãN£¬Ö¤Ã÷£ºµãPÔÚÅ×ÎïÏßCÉÏÒƶ¯Ê±£¬$\frac{|MF|}{|NF|}$ºãΪ¶¨Öµ£¬²¢Çó³ö´Ë¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªÈýÀâ׶A-BCDµÄËĸö¶¥µãÔÚ¿Õ¼äÖ±½Ç×ø±êϵO-xyzÖеÄ×ø±ê·Ö±ðΪA£¨2£¬0£¬2£©£¬B£¨2£¬1£¬2£©£¬C£¨0£¬2£¬2£©£¬D£¨1£¬2£¬0£©£¬»­¸ÃÈýÀâ׶µÄÈýÊÓͼÖеĸ©ÊÓͼʱ£¬ÒÔxOyƽÃæΪͶӰÃ棬ÔòµÃµ½µÄ¸©ÊÓͼ¿ÉÒÔΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýy=2sin£¨x+$\frac{¦Ð}{2}$£©cos£¨x-$\frac{¦Ð}{2}$£©ÓëÖ±Ïßy=$\frac{1}{2}$Ïཻ£¬ÈôÔÚyÖáÓÒ²àµÄ½»µã×Ô×óÏòÓÒÒÀ´Î¼ÇΪM1£¬M2£¬M3£¬¡­£¬Ôò|$\overrightarrow{{M}_{1}{M}_{12}}$|µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{16¦Ð}{3}$B£®6¦ÐC£®$\frac{17¦Ð}{3}$D£®12¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èôa=£¨$\frac{1}{2}$£©${\;}^{\frac{1}{5}}$£¬b=£¨$\frac{1}{5}$£©${\;}^{-\frac{1}{2}}$£¬c=log${\;}_{\frac{1}{5}}$10£¬Ôòa£¬b£¬c´óС¹ØϵΪ£¨¡¡¡¡£©
A£®a£¾b£¾cB£®a£¾c£¾bC£®c£¾b£¾aD£®b£¾a£¾c

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÅ×ÎïÏßC1£ºy2=8ax£¨a£¾0£©£¬Ö±ÏßlÇãб½ÇÊÇ45¡ãÇÒ¹ýÅ×ÎïÏßC1µÄ½¹µã£¬Ö±Ïßl±»Å×ÎïÏßC1½ØµÃµÄÏ߶γ¤ÊÇ16£¬Ë«ÇúÏßC2£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÒ»¸ö½¹µãÔÚÅ×ÎïÏßC1µÄ×¼ÏßÉÏ£¬ÔòÖ±ÏßlÓëyÖáµÄ½»µãPµ½Ë«ÇúÏßC2µÄÒ»Ìõ½¥½üÏߵľàÀëÊÇ£¨¡¡¡¡£©
A£®2B£®$\sqrt{3}$C£®$\sqrt{2}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Éèa£¬b¡ÊR£¬Èôa£¾b£¬Ôò£¨¡¡¡¡£©
A£®$\frac{1}{a}$£¼$\frac{1}{b}$B£®2a£¾2bC£®lga£¾lgbD£®sina£¾sinb

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸