精英家教网 > 高中数学 > 题目详情

【题目】关于的说法,正确的是( )

A.展开式中的二项式系数之和为2048

B.展开式中只有第6项的二项式系数最大

C.展开式中第6项和第7项的二项式系数最大

D.展开式中第6项的系数最小

【答案】ACD

【解析】

根据二项式系数的性质即可判断选项A

为奇数可知,展开式中二项式系数最大项为中间两项,据此即可判断选项BC

由展开式中第6项的系数为负数,且其绝对值最大即可判断选项D.

对于选项A:由二项式系数的性质知,的二项式系数之和为,故选项A正确;

因为的展开式共有项,中间两项的二项式系数最大,即第6项和第7项的二项式系数最大,故选项C正确,选项B错误;

因为展开式中第6项的系数是负数,且绝对值最大,所以展开式中第6项的系数最小,故选项D正确;

故选:ACD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某摸球游戏的规则如下:从装有5个大小、形状完全相同的小球的盒中摸球(其中3个红球、2个黄球),每次摸一个球记录颜色并放回,若摸出红球记1分,摸出黄球记2分.

1)求摸球三次得分为5的概率;

2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解中学生课外阅读情况,现从某中学随机抽取名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.

下面有四个推断:

①这名学生阅读量的平均数可能是本;

②这名学生阅读量的分位数在区间内;

③这名学生中的初中生阅读量的中位数一定在区间内;

④这名学生中的初中生阅读量的分位数可能在区间.

所有合理推断的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了加强学生数学核心素养的培养,锻炼学生自主探究学习的能力,他们以函数为基本素材,研究该函数的相关性质,取得部分研究成果如下:其中研究成果正确的是(

A.同学甲发现:函数的定义域为(﹣11),且fx)是偶函数

B.同学乙发现:对于任意的x∈(﹣11),都有

C.同学丙发现:对于任意的ab∈(﹣11),都有

D.同学丁发现:对于函数定义域内任意两个不同的实数x1x2,总满足

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.是自然对数的底数)

1)求的单调递减区间;

2)若函数,证明上只有两个零点.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxlg

1)判断并证明函数fx)的单调性;

2)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

,解不等式

若不等式对一切实数x恒成立,求实数a的取值范围;

,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表中的数据是一次阶段性考试某班的数学、物理原始成绩:

用这44人的两科成绩制作如下散点图:

学号为22号的同学由于严重感冒导致物理考试发挥失常,学号为31号的同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将两同学的成绩(对应于图中两点)剔除后,用剩下的42个同学的数据作分析,计算得到下列统计指标:

数学学科平均分为110.5,标准差为18.36,物理学科的平均分为74,标准差为11.18,数学成绩

与物理成绩的相关系数为,回归直线(如图所示)的方程为.

(1)若不剔除两同学的数据,用全部44人的成绩作回归分析,设数学成绩与物理成绩的相关系数为,回归直线为,试分析的大小关系,并在图中画出回归直线的大致位置;

(2)如果同学参加了这次物理考试,估计同学的物理分数(精确到个位);

(3)就这次考试而言,学号为16号的同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平,可按公式统一化成标准分再进行比较,其中为学科原始分,为学科平均分,为学科标准差)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业接到生产3000台某产品的三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件),已知每个工人每天可生产A部件6件,或B部件3件,或C部件2.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为kk为正整数).

1)设生产部件的人数为,分别写出完成三种部件生产需要的时间;

2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.

查看答案和解析>>

同步练习册答案