【题目】如图,已知三棱柱中,平面平面,,.
(1)证明:;
(2)设,,求二面角的余弦值.
【答案】(1)证明见解析 (2)
【解析】
(1)连结.由菱形得对角线垂直,再由已知及面面垂直的性质定理得线面垂直平面,平面,从而,于是证得线面垂直后再得线线垂直;
(2)取的中点为,连结,证得与都垂直后,以为原点,为正方向建立空间直角坐标系,写出各点坐标,求出平面的法向量,则法向量夹角得二面角,注意要判断二面角是锐角还是钝角.
(1)连结.
∵,四边形为菱形,∴.
∵平面平面,平面平面,
平面,,
∴平面.
又∵,∴平面,∴.
∵,
∴平面,而平面,
∴
(2)取的中点为,连结.
∵,四边形为菱形,,∴,.
又由(1)知,以为原点,为正方向建立空间直角坐标系,如图.
设,,,,
∴(0,0,0),(1,0,),(2,0,0),(0,1,0),(-1,1,).
由(1)知,平面的一个法向量为.
设平面的法向量为,则,∴.
∵,,∴.
令,得,即.
∴,
∴二面角的余弦值为
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC, .点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地拟建造一座大型体育馆,其设计方案侧面的外轮廓如图所示,曲线是以点为圆心的圆的一部分,其中;曲线是抛物线的一部分;,且恰好等于圆的半径.假定拟建体育馆的高(单位:米,下同).
(1)若,,求、的长度;
(2)若要求体育馆侧面的最大宽度不超过米,求的取值范围;
(3)若,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体,过对角线作平面交棱于点E,交棱于点F,则:
①平面分正方体所得两部分的体积相等;
②四边形一定是平行四边形;
③平面与平面不可能垂直;
④四边形的面积有最大值.
其中所有正确结论的序号为( )
A.①④B.②③C.①②④D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体,过对角线作平面交棱于点E,交棱于点F,则:
①四边形一定是平行四边形;
②四边形有可能为正方形;
③四边形在底面内的投影一定是正方形;
④平面有可能垂直于平面.
其中所有正确结论的序号为( )
A.①②B.②③④C.①④D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABCA1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,=λ.
(1)若λ=1,求直线DB1与平面A1C1D所成角的正弦值;
(2)若二面角B1- A1C1-D的大小为60°,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥中,BO、AO、CO所在直线两两垂直,且AO=CO,∠BAO=60°,E是AC的中点,三棱锥的体积为
(1)求三棱锥的高;
(2)在线段AB上取一点D,当D在什么位置时,和的夹角大小为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com