精英家教网 > 高中数学 > 题目详情

已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.

(1)求直线l2的方程;

(2)求由直线l1,l2和x轴所围成的三角形面积.

 

 

【答案】

:(1)由题意知y′=2x+1,直线l1的斜率k=2×1+1=3,所以直线l1的方程为y=3x-3,设直线l2过曲线y=x2+x-2上的点B(b,b2+b-2),则l2的方程为y=(2b+1)x-b2-2,由于l1⊥l2,则2b+1=-,b=-,故l2的方程为y=-x-.

(2)l1与l2的交点坐标为(,-), l1,l2与x轴的交点坐标分别为(1,0),(-,0),

所以所求三角形面积S=××|-|=.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2
(Ⅰ)求直线l2的方程;
(Ⅱ)求由直线l1、l2和x轴所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1为曲线y=x2+x-2在点(0,-2)处的切线,l2为该曲线的另一条切线,且l1⊥l2,则直线l2的方程为:
x+y+3=0
x+y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1为曲线y=x2在点(1,1)处的切线,l2为该曲线的另一条切线,且l1⊥l2
(1)求直线l1与l2的方程;
(2)求直线l1,l2与x轴所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源:贵州 题型:解答题

已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2
(Ⅰ)求直线l2的方程;
(Ⅱ)求由直线l1、l2和x轴所围成的三角形的面积.

查看答案和解析>>

同步练习册答案