精英家教网 > 高中数学 > 题目详情
给出下列命题:
①函数y=在区间[1,3]上是增函数;
②函数f(x)=2x-x2的零点有3个;
③函数y=sin x(x∈[-π,π])图象与x轴围成的图形的面积是S=
④若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.
其中真命题的序号是(请将所有正确命题的序号都填上):   
【答案】分析:①借助于导数来解决函数的单调性问题;
②函数的零点问题可借助于两函数图象的交点来完成,用图形来做;
③考查定积分的几何意义;
④考查正态分布的有关概率,注意ξ~N(1,σ2),即是1的左右两侧的概率全是0.5.
解答:解:①由于的导函数是,令y′>0,解得-2<x<2,故①错误;
②由于函数f(x)=2x-x2的零点的个数即是方程2x-x2=0的解的个数,也是函数交点个数,
在同一直角坐标系中,分别画出两函数的图象如下:
则函数有三个零点,故②正确;
③由于函数y=sin x(x∈[-π,π])图象是关于关于原点对称,故与x轴围成的图形的面积是S=,故③错;
④由于ξ~N(1,σ2),则P(0≤ξ≤1)=P(1≤ξ≤2)=0.3,则P(ξ≥2)==0.2,故④正确.
故答案为②④.
点评:本题考查的知识点是,判断命题真假,我们可以对四个结论逐一进行判断,方可得到正确的结论
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①函数f(x)=4cos(2x+
π
3
)
的一条对称轴是直线x=-
12

②已知函数f(x)=min{sinx,cosx},则f(x)的值域为[-1,
2
2
]

③若α,β均为第一象限角,且α>β,则sinα>sinβ.
其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(3a-1)x-2  x<1
logax         x≥1
,现给出下列命题:
①函数f(x)的图象可以是一条连续不断的曲线;
②能找到一个非零实数a,使得函数f (x)在R上是增函数;
③a>1时函数y=f (|x|) 有最小值-2.
其中正确的命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的“l高调函数”.现给出下列命题:
①函数f(x)=2x为R上的“1高调函数”;
②函数f(x)=sin2x为R上的“A高调函数”;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上“m高调函数”,那么实数m的取值范围是[2,+∞);
其中正确的命题是
①②③
①②③
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin|x|不是周期函数;        ②函数y=tanx在定义域内是增函数;
③函数y=|cos2x+
1
2
|
的周期是
π
2
;    ④函数y=sin(x+
2
)
是偶函数.
其中正确的命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=cos(
2
3
x+
π
2
)
是奇函数;②函数y=sinx+cosx的最大值为
3
2

③函数y=tanx在第一象限内是增函数;
④函数y=sin(2x+
π
2
)
的图象关于直线x=
π
12
成轴对称图形.
其中正确的命题序号是

查看答案和解析>>

同步练习册答案