精英家教网 > 高中数学 > 题目详情

【题目】第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:

收看时间(单位:小时)

收看人数

14

30

16

28

20

12

(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全列联表:

合计

体育达人

40

非体育达人

30

合计

并判断能否有的把握认为该校教职工是否为“体育达人”与“性别”有关;

(2)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为,求的分布列与数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)根据题意填写列联表,计算观测值,对照临界值得出结论;
(2)由题意知抽取的6名“体育达人”中有4名男职工,2名女职工,

所以的可能取值为0,1,2.计算概率值.得到分布列与数学期望.

试题解析:

(1)由题意得下表:

合计

体育达人

40

20

60

非体育达人

30

30

60

合计

70

50

120

的观测值为 .

所以有的把握认为该校教职工是“体育达人”与“性别”有关.

(2)由题意知抽取的6名“体育达人”中有4名男职工,2名女职工,

所以的可能取值为0,1,2.

所以的分布列为

0

1

2

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC的一个顶点为A(2,3),两条高所在直线方程为x-2y+3=0和xy-4=0,求△ABC三边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式e2xalnxa恒成立,则实数a的取值范围是(

A.[02e]B.(﹣∞,2e]C.[02e2]D.(﹣∞,2e2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧的长度之和为米,圆心角为弧度.

(1)关于的函数解析式;

(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某船在海面处测得灯塔在北偏东方向,与相距海里,测得灯塔在北偏西方向,与相距海里,船由向正北方向航行到处,测得灯塔在南偏西方向,这时灯塔相距多少海里?的什么方向?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求实数的值;

(2)令上的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知四边形是直角梯形,,其中上的一点,四边形是菱形,满足,沿折起,使

(1)求证:平面平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史,某陶瓷厂在生产过程中,对仿制100件工艺品测得其重量(单位:) 数据,将数据分组如下表:

(1)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是2.25)作为代表.据此,估计这100个数据的平均值;

(2)根据样本数据,以频率作为槪率,若该陶瓷厂生产这样的工艺品5000件,试估计重量落在中的件数;

(3)从第一组和第六组6件工艺品中随机抽取2个工艺品,求一个来自第一组,一个来自第六组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,分别是椭圆的左、右顶点(如图所示),点在椭圆的长轴上运动,且.设圆是以点为圆心,为半径的圆.

(1)若,圆和椭圆在第一象限的交点坐标为,求椭圆的方程;

(2)若椭圆的离心率为,过点作互相垂直的两条直线,交椭圆于P,Q两点,若直线PQ过点M,求m的值(用含的代数式表示);

(3)当圆与椭圆有且仅有点一个交点时,求的运动范围(用含的代数式表示).

查看答案和解析>>

同步练习册答案