精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin2(x-
π
6
)+sin2(x+
π
6
).
(1)求函数f(x)的最小正周期;
(2)若x∈[-
π
3
π
6
],求函数f(x)的值域.
考点:二倍角的余弦,三角函数的周期性及其求法
专题:三角函数的求值
分析:(1)由条件利用三角函数的恒等变换、以及y=Asin(ωx+)的周期等于 T=
ω
,可得结论.
(2)由条件利用余弦函数的定义域和值域,求得函数f(x)的值域.
解答: 解:(1)函数f(x)=sin2(x-
π
6
)+sin2(x+
π
6
)=
1-cos(2x-
π
3
)
2
+
1-cos(2x+
π
3
)
2
 
=1-
1
2
[cos2xcos
π
3
+sin2xsin
π
3
+cos2xcos
π
3
-sin2xsin
π
3
]=1-
1
2
•2cos2xcos
π
3
=1-
1
2
cos2x,
所以,函数f(x)的最小正周期为
2
=π.
(2)因为x∈[-
π
3
π
6
],所以 2x∈[-
3
 
π
3
],∴cos2x∈[-
1
2
,1],f(x)∈[
1
2
5
4
],
故函数f(x)的值域为[
1
2
5
4
].
点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的周期性和求法,余弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设单位向量
a
b
c
满足:
a
b
=0,存在实数x,y使得
c
=x
a
+y
b
,则实数x+y的取值范围是(  )
A、[-1,1]
B、[0,1]
C、[-
2
2
]
D、[0,
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年9月4日国务院新闻办公室举行《关于深化考试招生制度改革的实施意见》情况发布会,宣告新的高考制度改革正式拉开帷幕.该《实施意见》提出了“两依据、一参考”,其中一个依据是高考成绩,另一个依据是高中学业水平考试成绩.强调了把高中学业水平考试作为考察学生学业完成情况的一个重要方式.近日,某调研机构在某地区对“在这种情况下学生的课业负担是否会加重?”这一问题随机选择3600人进行问卷调查.调查结果统计如下:
不会不知道
在校学生2100120y
社会人士600xz
已知在全体被调查者中随机抽取一人,抽到持“不会”意见的人的概率为0.05.
(Ⅰ) 求x和y+z的值;
(Ⅱ) 在持“不会”意见的被调查者中,用分层抽样的方法抽取6个人,然后把他们随机分成两组,每组3人,进行深入交流,求第一组中社会人士人数ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对应边分别为a,b,c,已知a=csinB+bcosC,b=
2
,则△ABC面积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,且点(a,b)在过点(0,2),(1,0)的直线上,求S=2
ab
-(4a2+b2)
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数z=
1+i
3-4i
的共轭复数
.
z
对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x||x-1|≤
1
2
,x∈R},Q={x|x∈N},则P∩Q等于(  )
A、[0,1]B、{0,1}
C、{1}D、{0}

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合P={x|-2≤x≤2},M={x|x2-2x-3≤0},则(∁UP)∩M等于(  )
A、{x|-2≤x≤2}
B、{x|2<x≤3}
C、{x|2≤x≤3}
D、{x|-1<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=mx+n.
(1)设h(x)=f(x)-g(x).
①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;
②当n=0时,若函数h(x)在(-1,+∞)上没有零点,求m的取值范围;
(2)设函数r(x)=
1
f(x)
+
nx
g(x)
,且n=4m(m>0),求证:当x≥0时,r(x)≥1.

查看答案和解析>>

同步练习册答案