精英家教网 > 高中数学 > 题目详情
1.函数f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定义域是(  )
A.(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞)B.($\frac{3}{2},+∞$)
C.$[1,\frac{3}{2})∪(\frac{3}{2},+∞)$D.$(1,\sqrt{10})∪(\sqrt{10},+∞)$

分析 由根式内部的代数式大于等于0,对数式的真数大于0,分式的分母不为0联立不等式组得答案.

解答 解:由$\left\{\begin{array}{l}{x>0}\\{lgx-\frac{1}{2}≠0}\end{array}\right.$,解得x>0且x$≠\sqrt{10}$.
∴函数f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定义域是(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞).
故选:A.

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.解下列不等式:
(1)$\frac{4}{x}≤x$
(2)|x-1|+|2x-1|<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知奇函数f (-2)=5,则f ( 2 )=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题$p:?x∈[{1,2}],\frac{1}{2}{x^2}-lnx-a≥0$是真命题,则实数a的取值范围是(  )
A.$[{\frac{1}{2},+∞})$B.$({-∞,\frac{1}{2}}]$C.[2-ln2,+∞)D.(-∞,2-ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}为等差数列,a1=2,其前n和为Sn,数列{bn}为等比数列,且${a_1}{b_1}+{a_2}{b_2}+{a_3}{b_3}+…+{a_n}{b_n}=(n-1)•{2^{n+2}}+4$对任意的n∈N*恒成立.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在p,q∈N*,使得$2{({a_p})^5}-{b_q}=2016$成立,若存在,求出所有满足条件的p,q;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若关于x的函数y=loga(ax+1)(a>0且a≠1)在[-3,-2]上单调递减,则实数a的取值范围为0<a<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点M(0,-2),点N在直线x-y-1=0上,若直线MN垂直于直线x+2y-3=0,则N点的坐标是(  )
A.(-2,-3)B.(1,0)C.(2,3)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和Sn=n2-9,则其通项an=$\left\{\begin{array}{l}{-8,n=1}\\{2n-1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a是实数,函数f(x)=$\frac{{x}^{2}+ax+4}{x}$是奇函数,求f(x)在(0,+∞)上的最小值及取到最小值时x的值.

查看答案和解析>>

同步练习册答案