精英家教网 > 高中数学 > 题目详情

设函数f(x)=x2-2(-1)klnx(k∈N*),f(x)表示f(x)导函数.
(I)求函数f(x)的单调递增区间;
(Ⅱ)当k为偶数时,数列{an}满足a1=1,数学公式.证明:数列{数学公式}中不存在成等差数列的三项;
(Ⅲ)当k为奇数时,设数学公式,数列{bn}的前n项和为Sn,证明不等式数学公式?对一切正整数n均成立,并比较S2012-1与ln2012的大小.

解:(I)函数f(x)的定义域为(0,+∞),又f′(x)=2x-2(-1)k =
1°当k 为奇数时,f′(x)=,∵x∈(0,+∞),∴f′(x)>0恒成立;
2°当k 为偶数时,f′(x)=,∵x+1>0,∴f′(x)>0得x>1,即f(x)的单调增区间为(1,+∞),
综上所述,当k 为奇数时,f(x)的单调增区间为(0,+∞),当k 为偶数时,即f(x)的单调增区间为(1,+∞),
(Ⅱ)当k 为偶数时,由(1)知f′(x)=2x-,∴f′(an)=2an-
由条件得:2(an2-1)=a n+1 2-3,故有:an+1 2+1=2(an 2+1),
∴{an 2+1}是一个公比为2的等比数列,∴an2=2n-1,
假设数列{an2}中的存在三项ar 2,s 2,at 2,能构成等差数列
不妨设r<s<t,则2as 2=a r 2+at 2
即2(2s-1)=2r-1+2t-1,∴2 s-r+1=1+2 t-r
又s-r+1>0,t-r>0,∴2 s-r+1为偶数,1+2 t-r为奇数,故假设不成立,
因此,数列{an2}中的任意三项不能构成等差数列;
(Ⅲ) 当k为奇数时,f′(x)=2(x+),
∴bn=f′(n)-n=,Sn=1+++…+
要证(1+bn>e,即证(1+n+1>e,两边取对数,
即证ln(1+)>(10分)
设1+=t,则n=
lnt>1-(t>1),构造函数g(t)=lnt+-1,
∵x>1,∴g′(t)=>0
∴g(t)在(1,+∞)上是增函数,g(t)>g(1)>0
即lnt>1-,∴(1+bn>e,
S2012-1=(1+++…+)-1=++…+
∵ln(1+)>,∴++…+<ln2+ln(1+)+…+ln(1+)=ln2+ln+…+ln
=ln(2××…×)=ln2012,
++…+<ln2012,
分析:(I)先求函数f(x)的导数,f′(x),再对k进行奇偶数讨论:1°当k 为奇数时;2°当k 为偶数时;分别得出导数值为正或负时的x的取值集合,最后综合即可;
(II)当k 为偶数时,由(1)知f′(x),由条件得{an 2+1}是一个公比为2的等比数列,从而得到an2=2n-1,最后利用反证法进行证明即可;
(Ⅲ) 当k为奇数时,f′(x)=2(x+),要证(1+bn>e,即证(1+n+1>e,两边取对数,即证ln(1+)>,设1+=t,构造函数g(t)=lnt+-1,利用导数工具研究其单调性即可证得lnt>1-,最后利用累乘法即可证出S2012-1<ln2012.
点评:本小题主要考查等差关系的确定、利用导数研究函数的单调性、证明不等式等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案