精英家教网 > 高中数学 > 题目详情
设△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠ABC=∠DBC=,求:
(1)直线AD与平面BCD所成角的大小;
(2)异面直线ADBC所成的角;
(3)二面角ABDC的大小.
(1) 45° (2) ADBC所成的角为90°(3) 二面角ABDC大小为π-arctan2.
(1)如图,在平面ABC内,过AAHBC,垂足为H,则AH⊥平面DBC
∴∠ADH即为直线AD与平面BCD所成的角 由题设知△AHB≌△AHD,则DHBHAH=DH
∴∠ADH=45°

(2)∵BCDH,且DHAD在平面BCD上的射影,
BCAD,故ADBC所成的角为90°。
(3)过HHRBD,垂足为R,连结AR,则由三垂线定理知,ARBD,故∠ARH为二面角ABDC的平面角的补角 设BC=a,则由题设知,AH=DH=,在△HDB中,HR=a,∴tanARH==2
故二面角ABDC大小为π-arctan2.
另法(向量法): (略)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图5所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD="60°," ∠BDC=45°,PD垂直底面ABCD,PD=分别是PB,CD上的点,且,过点E作BC的平行线交PC于G.
(1)求BD与平面ABP所成角θ的正弦值;
(2)证明:△EFG是直角三角形;
(3)当时,求△EFG的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,点A(0,0,a),在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD=90°,∠ADB=30°,EF分别是ACAD的中点.求DCEF这四点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体ABCD—A1B1C1D1,过顶点A1在空间作直线,使直线与直线AC和BC1所成的角都等于600,这样的直线可以作                                    (  )
A.4条B.3条C.2条D.1条

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一条直线和一个平面所成的角为,则此直线和平面内不经过斜足的所有直线所成的角中最大的角是____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各棱长均为a的正四面体ABCDEAD边的中点,连结CE.求CE与底面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1所示,在边长为的正方形中,,且,分别交于点,将该正方形沿折叠,使得重合,构成如图2所示的三棱柱
(Ⅰ)求证:
(Ⅱ)在底边上有一点,,
求证:
(III)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

异面直线所成角θ的范围是(  )
A.0°<θ<90°B.0°<θ<180°C.0°<θ≤90°D.0°≤θ<90°

查看答案和解析>>

同步练习册答案