分析 (1)将m=3代入求出集合M,N,进而可得M∪N;
(2)若M∩N=M,可得M?N,结合M=[1,3],N=[m-1,+∞),可得答案.
解答 解:(1)∵集合$M=\left\{{\left.x\right|y=\sqrt{3-x}+\sqrt{x-1}}\right\}$=[1,3],
又∵集合N={y|y=x2-2x+m},
∴y=x2-2x+m=(x-1)2+m-1,
∴N={y|m-1≤y}=[m-1,+∞),
当m=3时,N={y|2≤y}=[2,+∞),
∴M∪N=[1,+∞),
(2)∵M∩N=M,可得M?N,
由(1)知M=[1,3],N=[m-1,+∞),
所以m≤2.
点评 本题考查的知识点是集合的包含关系判断与应用,集合的运算,难度不大,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 等腰三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{9}$ | B. | 9 | C. | -9 | D. | -$\frac{1}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com