精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)(x∈R)满足f(x+1)=
1
f(x)
,且当x∈[-1,1]时,f(x)=|x|,函数g(x)=
sinπx,x≥0
-
1
x
,x<0
,则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为(  )
A、8B、9C、10D、11
考点:正弦函数的图象,根的存在性及根的个数判断
专题:三角函数的图像与性质
分析:由题意可得可得f(x+2)=f(x),函数f(x)是周期为2的周期函数.本题即求函数f(x)的图象和函数g(x)的图象在区间[-5,5]上的交点的个数,数形结合可得结论
解答: 解:由f(x+1)=
1
f(x)
,可得f(x+2)=f(x),故函数f(x)是周期为2的周期函数.
函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数,
即函数f(x)的图象和函数g(x)=
sinπx,x≥0
-
1
x
,x<0
的图象在区间[-5,5]上的交点的个数,
当x∈[-1,1]时,f(x)=|x|,
如图所示:数形结合可得函数f(x)的图象和函数g(x)的图象
在区间[-5,5]上的交点的个数为10,
故选:C.
点评:本题主要考查方程的根的存在性及个数判断,正弦函数的图象,体现了化归与转化、数形结合的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若sinθ•cosθ=
1
2
,则下列结论中一定成立的是(  )
A、sinθ=
2
2
B、sinθ=-
2
2
C、sinθ+cosθ=1
D、sinθ-cosθ=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
10-x-2,x≤0
2ax-1,x>0
(a是常数且a>0).给出下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③函数f(x)在(-∞,0)上的零点是x=lg
1
2

④若f(x)>0在[
1
2
,+∞)上恒成立,则a的取值范围是[1,+∞);
⑤对任意的x1,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(cos(α+β),sin(α+β)),
b
=(cos(α-β),sin(α-β)),且
a
+
b
=(
4
5
3
5
).
(1)求tanα;
(2)求
2cos2
α
2
-3sinα-1
2
sin(α+
π
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是∠A,∠B,∠C所对的边,a+c=2b,A-C=
3
.求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x+1)(x+
2
x
6的展开式中的常数项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(log2x)=
ax+b
x+
2
(a∈R,x>0)
(1)求函数y=f(x)的解析式;
(2)判断并用单调性定义证明函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

一球沿某一斜面自由滚下,测得滚下的垂直距离h(单位:m)与时间t(单位:s)之间的函数关系为h=t2,求t=4s时此球在垂直方向的瞬时速度.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Mcos(ω+φ)(M>0,ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则g(x)=Msin(ωx+φ)在[a,b]上(  )
A、是增函数
B、是减函数
C、可以取得最小值-M
D、可以取得最大值M

查看答案和解析>>

同步练习册答案