精英家教网 > 高中数学 > 题目详情

如图,长度为2的线段AB夹在直二面角α-l-β的两个半平面内,A∈α,Bβ,且AB与平面α,β所成的角都是30°,ACl,垂足为CBDl,垂足为D.

(Ⅰ)求直线ABCD所成角的大小;

(Ⅱ)求二面角CABD的平面角的余弦值.

答案:
解析:

  解法一:

  (Ⅰ)由于αβ,且ACl,则ACβ,以C为原点,建立如图所示的直角坐标系.

  

  


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•广州一模)如图,长度为2的线段AB夹在直二面角α-l-β的两个半平面内,A∈α,B∈β,
且AB与平面α、β所成的角都是30°,AC⊥l,垂足为C,BD⊥l,垂足为D.
(Ⅰ)求直线AB与CD所成角的大小;
(Ⅱ)求二面角C-AB-D所成平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长度为1的线段AB上有任意两点C、D(不与A、B重合)把AB分为三条线段AC、CD、DB,设AC=x,CD=y.
(1)求这三条线段能构成三角形需满足的条件(用x、y表示).
(2)求出这三条线段能构成三角形的概率.

查看答案和解析>>

科目:高中数学 来源:广州一模 题型:解答题

如图,长度为2的线段AB夹在直二面角α-l-β的两个半平面内,A∈α,B∈β,
且AB与平面α、β所成的角都是30°,AC⊥l,垂足为C,BD⊥l,垂足为D.
(Ⅰ)求直线AB与CD所成角的大小;
(Ⅱ)求二面角C-AB-D所成平面角的余弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2006年广东省广州市高考数学一模试卷(解析版) 题型:解答题

如图,长度为2的线段AB夹在直二面角α-l-β的两个半平面内,A∈α,B∈β,
且AB与平面α、β所成的角都是30°,AC⊥l,垂足为C,BD⊥l,垂足为D.
(Ⅰ)求直线AB与CD所成角的大小;
(Ⅱ)求二面角C-AB-D所成平面角的余弦值.

查看答案和解析>>

同步练习册答案