精英家教网 > 高中数学 > 题目详情

.如图,ABCD-A1B1C1D1是棱长为的正方体,M,N,P,Q,R,S分别是AA1,AB,AD,CC1,B1C1,C1D1的中点,求证:平面PMN∥平面QRS。

同解析。


解析:

连结BD,B1D1,则BD∥B1D1∵P,N分别为AD,AB的中点∴PN∥BD同理RS∥B1D1∴PN∥RS同理可证PM∥RQ∵PN∩PM=P,RS∩RQ=R∴平面PMN∥平面QRS

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,ABCD和ABEF都是边长为1的正方形,AM=FN,现将两个正方形沿AB折成一个直二面角,O∈AB,平面MON∥平面CBE.
精英家教网
(1)求角MON大小;
(2)设AO=x,当x为何值时,三棱锥A-MON的体积V最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)证明:面PBD⊥面PAC;
(2)求锐二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD-A′B′C′D′是棱长为2的正方体,E是棱AD的中点.
(1)求证:异面直线D′E⊥CD;
(2)求异面直线AC,BC′所成的角的大小;
(3)求三棱锥B′-A′BC′的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD-A′B′C′D′是棱长为2的正方体,E是棱AD的中点.
(1)求证:异面直线D′E⊥CD;
(2)求异面直线AC,BC′所成的角的大小;
(3)求三棱锥B′-A′BC′的表面积.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省深圳市南山区高一(上)期末数学试卷(解析版) 题型:解答题

如图,ABCD-A′B′C′D′是棱长为2的正方体,E是棱AD的中点.
(1)求证:异面直线D′E⊥CD;
(2)求异面直线AC,BC′所成的角的大小;
(3)求三棱锥B′-A′BC′的表面积.

查看答案和解析>>

同步练习册答案