精英家教网 > 高中数学 > 题目详情

【题目】某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.

1)求甲、乙两位同学总共正确作答3个题目的概率;

2)若甲、乙两位同学答对题目个数分别是,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和的期望.

【答案】(1);(250

【解析】

1)由题意可知共答对3题可以分为3种情况:甲答对1题乙答对2题;甲答对2题乙答对1题;甲答对3题乙答对0题.由此能求出甲、乙两位同学总共正确作答3个题目的概率.

2的所有取值有123.分别求出相应的概率,由此能求出,由题意可知,故.利用,得

解:(1)由题意可知共答对3题可以分为3种情况:甲答对1题乙答对2题;甲答对2题乙答对1题;甲答对3题乙答对0.故所求的概率

2的所有取值有123

,故

由题意可知,故.

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的最大值;

(2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度,药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间,已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:

根据图中提供的信息,下列关于成人使用该药物的说法中,正确的个数是(

①首次服用该药物1单位约10分钟后,药物发挥治疗作用

②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒

③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用

④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为为参数, ).

(1)求曲线的直角坐标方程和直线的普通方程;

(2)若曲线上的动点到直线的最大距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

1)求函数的解析式;

2)若关于的方程fx)=kex(其中e为自然对数的底数)恰有两个不同的实根,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县畜牧技术员张三和李四年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量(单位:万只)与相应年份(序号)的数据表和散点图(如图所示),根据散点图,发现yx有较强的线性相关关系.

年份序号

年养殖山羊/万只

1)根据表中的数据和所给统计量,求关于的线性回归方程(参考统计量:

2)李四提供了该县山羊养殖场的个数(单位:个)关于的回归方程.

试估计:①该县第一年养殖山羊多少万只?

②到第几年,该县山羊养殖的数量与第一年相比缩小了?

附:回归直线方程的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校将一次测试中高三年级学生的数学成绩统计如下表所示,在参加测试的学生中任取1人,其成绩不低于120分的概率为.

分数

频数

40

50

70

60

80

50

1)求的值;

2)若按照分层抽样的方法从成绩在的学生中抽取6人,再从这6人中随机抽取2人进行错题分析,求这2人中至少有1人的分数在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱的底面是直角三角形,

求证:平面

求二面角的余弦值;

求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥D-ABC中,EF分别为DBAB的中点,且.

1)求证:平面平面ABC

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

同步练习册答案