精英家教网 > 高中数学 > 题目详情

【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:

编号

1

2

3

4

5

年份

2014

2015

2016

2017

2018

数量(单位:辆)

37

104

147

196

216

1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;

2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:

i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;

ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)

参考公式及数据:对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为:

【答案】1,320;(2)(i)12人;(ii936

【解析】

1)由表中数据,计算得的值,则线性回归方程可求,取x=7求得y值得答案;

2)(i)由频率直方图求得有意竞拍报价不低于1000元的频率,乘以40得答案.

ii)由题意,.由频率直方图估算知,报价应该在900-1000之间,设报价为x百元,可得.求解x值即可.

1)由表中数据,计算得

故所求线性回归方程为

x=7,得

2)(i)由频率直方图可知,有意竞拍报价不低于1000元的频率为:

0.25+0.05)×1=0.3,

共抽取40位业主,则40×0.3=12,

∴有意竞拍不低于1000元的人数为12人.

ii)由题意,

由频率直方图估算知,报价应该在900-1000之间,

设报价为x百元,

解得x≈9.36.

∴至少需要报价936元才能竞拍成功.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系,直线的参数方程为 (为参数),曲线的参数方为 (为参数),为极点, 轴的非负半轴为极轴建立极坐标系.

(1)求直线和曲线的极坐标方程;

(2),,为直线与曲线的两个交点,的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,离心率,过椭圆右焦点的直线与椭圆交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存在直线,使得,若存在,求出直线的方程;若不存在,说明理由;

(Ⅲ)设点是一个动点,若直线的斜率存在,且中点,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.

根据该走势图下列结论正确的是( )

A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化

B. 这半年中,网民对该关键词相关的信息关注度不断减弱

C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差

D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为圆的直径,点在圆上,矩形所在平面和圆所在的平面互相垂直,已知

1)求证:平面平面

2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形均为正方形,点M的中点,点H在线段上,且与平面所成角的正弦值为.

1)求证:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为F,过点F的直线交抛物线于AB两点.

1)若,求直线AB的斜率;

2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的两个零点为.

(I)求曲线在点处的切线方程;

(II)求函数的单调区间;

(III)求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某商场随机抽取了2000件商品,按商品价格(元)进行统计,所得频率分布直方图如图所示.记价格在对应的小矩形的面积分别为,且.

1)按分层抽样从价格在的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;

2)在清明节期间,该商场制定了两种不同的促销方案:

方案一:全场商品打八折;

方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)

商品价格

优惠(元)

30

50

140

160

280

320

查看答案和解析>>

同步练习册答案