精英家教网 > 高中数学 > 题目详情

是定义域为R的恒大于零的可导函数,且满足 ,则当a<x<b时有        (    )

A.                        B. 

C.                        D.

B


解析:

由f(x)、g(x)是定义域为R上恒大于零的可导函数知,

,可知:

,即 从而在R上为单调递增函数

所以,式中均为正数,所以,故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)是定义域为R的奇函数,且满足f(x-2)=-f(x)对一切x∈R恒成立,当x∈[0,1]时,f(x)=x3,给出下列四个命题.
①f(x)是以4为周期的周期函数;
②f(x)在[1,3]上解析式为f(x)=(2-x)3
③f(x)图象的对称轴有x=±1;
④函数f(x)在R上无最大值.
其中正确命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在区间D上的函数,若对任何实数α∈(0,1)以及D中的任意两个实数x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)为定义在D上的C函数.
(Ⅰ)试判断函数f1(x)=x2,f2=
1x
(x<0)
是否为各自定义域上的C函数,并说明理由;
(Ⅱ)已知f(x)是R上的C函数,m是给定的正整数,设an=fn,n=0,1,2,…,m,且a0=0,am=2m.记Sf=a1+a2+…+am对于满足条件的任意函数f(x),试求Sf的最大值;
(Ⅲ)若g(x)是定义域为R的函数,且最小正周期为T,试证明g(x)不是R上的C函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.
(Ⅰ)求k的值,判断并证明当a>1时,函数f(x)在R上的单调性;
(Ⅱ)已知f(1)=
32
,函数g(x)=a2x+a-2x-2f(x),x∈[-1,1],求g(x)的值域;
(Ⅲ)已知a=3,若f(3x)≥λ•f(x)对于x∈[1,2]时恒成立.请求出最大的整数λ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在区间D上的函数,若对任何实数α∈(0,1)以及D中的任意两个实数x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)为定义在D上的C函数.
(Ⅰ)试判断函数数学公式是否为各自定义域上的C函数,并说明理由;
(Ⅱ)已知f(x)是R上的C函数,m是给定的正整数,设an=fn,n=0,1,2,…,m,且a0=0,am=2m.记Sf=a1+a2+…+am对于满足条件的任意函数f(x),试求Sf的最大值;
(Ⅲ)若g(x)是定义域为R的函数,且最小正周期为T,试证明g(x)不是R上的C函数.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京101中学高三(上)数学试卷(理科)(解析版) 题型:解答题

设f(x)是定义在区间D上的函数,若对任何实数α∈(0,1)以及D中的任意两个实数x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)为定义在D上的C函数.
(Ⅰ)试判断函数是否为各自定义域上的C函数,并说明理由;
(Ⅱ)已知f(x)是R上的C函数,m是给定的正整数,设an=fn,n=0,1,2,…,m,且a=0,am=2m.记Sf=a1+a2+…+am对于满足条件的任意函数f(x),试求Sf的最大值;
(Ⅲ)若g(x)是定义域为R的函数,且最小正周期为T,试证明g(x)不是R上的C函数.

查看答案和解析>>

同步练习册答案