精英家教网 > 高中数学 > 题目详情
1.若实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)的最小正周期为π,则ω=2.

分析 利用两角和的正弦公式化简函数的解析式,再利用正弦函数的周期性,求得ω的值.

解答 解:实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)=$\sqrt{2}$sin(ωx+$\frac{π}{4}$)的最小正周期为π,
∴$\frac{2π}{ω}$=π,∴ω=2,
故答案为:2.

点评 本题主要考查两角和的正弦公式,正弦函数的周期性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知m>1,x,y满足约束条件$\left\{\begin{array}{l}x-y+4≥0\\ mx-y+5-m≤0\\ 0≤x≤1\end{array}$,若目标函数z=ax+by(a>0,b>0)的最大值为3,则$\frac{1}{a}$+$\frac{2}{b}$(  )
A.有最小值 $\frac{{11+2\sqrt{10}}}{3}$B.有最大值$\frac{{11+2\sqrt{10}}}{3}$
C.有最小值$\frac{{11-2\sqrt{10}}}{3}$D.有最大值$\frac{{11-2\sqrt{10}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P(0,1)到双曲线$\frac{y^2}{4}-{x^2}=1$渐近线的距离是(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=ax2-bx+1(a≠0)是定义在R上的偶函数,则函数g(x)=ax3+bx2+x(x∈R)是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.计算:log3$\sqrt{27}$+lg4+lg25+(-$\frac{1}{8}$)0=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x-3,则不等式f(x)<-5的解为(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}满足an=A•4n+B•n,其中A、B是两个确定的实数,B≠0.
(1)若A=B=1,求{an}的前n项之和;
(2)证明:{an}不是等比数列;
(3)若a1=a2,数列{an}中除去开始的两项之外,是否还有相等的两项?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-ax-1(a∈R),g(x)=xf(x)+$\frac{1}{2}{x^2}$+2x.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当a=1时,若函数g(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求m的值.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:选择题

的值为

A. B. C. D.

查看答案和解析>>

同步练习册答案