精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)求证:数列{an}为等差数列的充要条件是3A-B+C=0;
(2)若C=0,{an}是首项为1的等差数列,设P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超过P的最大整数的值.
分析:(1)①利用等差数列的通项公式和前n项和公式即可证明“必要性”;②利用数学归纳法即可证明其“充分性”;
(2)利用(1)的结论及裂项求和即可得出.
解答:解:(1)①数列{an}为等差数列,
∴an+Sn=a1+(n-1)d+na1+
n(n-1)d
2
=
d
2
n2+(a1+
d
2
)n+a1-d
=An2+Bn+C,
A=
d
2
B=a1+
d
2
,C=a1-d,
∴3A-B+C=
3d
2
-(a1+
d
2
)
+(a1-d)=0,因此3A-B+C=0成立;
②当B=3A+C时,则an+Sn=An2+(3A+C)n+C
当n=1时,2a1=4A+2C,得到a1=2A+C;
当n=2时,a2+S2=4A+2(3A+C)+C,化为2a2+a1=10A+3C,∴a2=4A+C;
当n=3时,a3+S3=9A+3(3A+C)+C,化为2a3+a2+a1=18A+4C,∴a3=6A+C;

猜想:数列{an}是以2A+C为首项,2A为公差的等差数列,则an=2nA+C.
下面用数学归纳法证明:
(i)当n=1时,易知成立.
(ii)假设n=k 时成立,即ak=2kA+C.
则n=k+1时,由ak+1+Sk+1=A(k+1)2+(3A+C)(k+1)+C,
而ak+Sk=Ak2+(3A+C)k+C,
两式相减得2ak+1-ak=(2k+4)A+C,把ak=2kA+C代入得
ak+1=2(k+1)A+C,
即当n=k+1时,ak+1=2(k+1)A+C成立.
综上可知:对于?n∈N*,an=2nA+C都成立,即数列{an}是等差数列.
由以上①②可知:数列{an}为等差数列的充要条件是3A-B+C=0;
(2)∵{an}是首项为1的等差数列,
由(1)知:B=3A,∴1+1=A+B=4A,∴A=
1
2
,B=
3
2
,∴d=2A=1,
公差d=1,∴an=n.∴
1+
1
a
2
n
+
1
a
2
n+1
=
1+
1
n2
+
1
(n+1)2

=
n2(n+1)2+(n+1)2+n2
n2(n+1)2
=
n(n+1)+1
n(n+1)

=1+
1
n
-
1
n+1

P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
=
2012
i=1
(1+
1
i
-
1
i+1
)

=2012+1-
1
2013
=2013-
1
2013
<2013.
∴不超过P的最大整数的值为2012.
点评:数列掌握等差数列的通项公式和前n项和公式、数学归纳法、充要条件、裂项求和是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项an=
1
pn-q
,实数p,q满足p>q>0且p>1,sn为数列{an}的前n项和.
(1)求证:当n≥2时,pan<an-1
(2)求证sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求证sn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求证:{an}是等差数列;
(2)若数列{bn}满足b1=2,bn+1=2an+bn,求数列{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)数列{an}的前n项和为Sn,若数列{an}的各项按如下规律排列:
1
2
1
3
2
3
1
4
2
4
3
4
1
5
2
5
3
5
4
5
…,
1
n
2
n
,…,
n-1
n
,…有如下运算和结论:
①a24=
3
8

②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;
③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为Tn=
n2+n
4

④若存在正整数k,使Sk<10,Sk+1≥10,则ak=
5
7

其中正确的结论是
①③④
①③④
.(将你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若数列{an}的前n项和Sn=2n+1,则数列{an}为等比数列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么满足条件的△ABC有两解;
③设函数f(x)=x|x-a|+b,则函数f(x)为奇函数的充要条件是a2+b2=0;
④设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是

查看答案和解析>>

同步练习册答案