精英家教网 > 高中数学 > 题目详情
1.在△ABC中,$C=\frac{π}{3}$,则cos2A+cos2B的最大值和最小值分别是(  )
A.$1-\frac{{\sqrt{3}}}{2},\frac{3}{2}$B.$\frac{1}{2}$,$\frac{5}{4}$C.$1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{3}}}{2}$D.$1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2}$

分析 由题意可得 A-B∈[-120°,120°],利用二倍角公式化简 y=cos2A+cos2B 为$\frac{1}{2}$+cos(A-B),由于 cos120°≤cos(A-B)≤cos0°,即-$\frac{1}{2}$≤cos(A-B)≤1,从而求得cos2A+cos2B 的最值.

解答 解:∵A+B=120°,
∴A-B∈[-120°,120°],
∴y=cos2A+cos2B=$\frac{1+cos2A}{2}$+$\frac{1+cos2B}{2}$═1+$\frac{1}{2}$(cos2A+cos2B)
=1+cos(A+B)cos(A-B)=1+cos120°cos(A-B)
=1-$\frac{1}{2}$cos(A-B),
∵由于 cos120°≤cos(A-B)≤cos0°,即-$\frac{1}{4}$≤$\frac{1}{2}$cos(A-B)≤$\frac{1}{2}$,
∴$\frac{1}{2}$≤cos2A+cos2B≤$\frac{5}{4}$.
故选:B.

点评 本题是基础题,考查三角函数的化简求值,二倍角公式、和差化积公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若f(x)=2x3+x2+1,则$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{△x}$=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“a和b都不是奇数”的否定是(  )
A.a和b至少有一个奇数B.a和b至多有一个是奇数
C.a是奇数,b不是奇数D.a和b都是奇数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,设E,F分别是Rt△ABC的斜边BC上的两个三等分点,已知AB=3,AC=6,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=(  ) 
A.8B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=(1+x)2-mln(1+x),g(x)=x2+x+a.
(Ⅰ)当a=0时,f(x)≥g(x)在(0,+∞)上恒成立,求实数m的取值范围;
(Ⅱ)当m=2时,若函数h(x)=f(x)-g(x)在[0,2]上恰有两个不同的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,a,b,c分别为角A,B,C对应的边,若$a=\sqrt{3},b=\sqrt{2},∠B=\frac{π}{4}$,则∠C=$\frac{5π}{12}$或$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司生产一种商品的固定成本为200元,每生产一件商品需增加投入10元,已知总收益满足函数:g(x)=$\left\{\begin{array}{l}{40x-\frac{1}{2}{x}^{2},0≤x≤40}\\{800,x>40}\end{array}\right.$其中x是商品的月产量.
(1)将利润表示为月产量的函数f(x)(总收益=总成本+利润);
(2)当月产量为何值时公司所获利润最大?最大利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)={log_a}(1-\frac{2}{x+1})$(a>0,a≠1)
(1)写出函数f(x)的值域、单调区间(不必证明)
(2)是否存在实数a使得f(x)的定义域为[m,n],值域为[1+logan,1+logam]?若存在,求出实数a的取值范围;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2s,则爆炸点所在曲线为(  )
A.椭圆的一部分B.双曲线的一支C..线段D.

查看答案和解析>>

同步练习册答案