精英家教网 > 高中数学 > 题目详情
12.已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+3.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{{3}^{n}}$,求数列{bn}的前n项和.

分析 (Ⅰ)通过在an2+2an=4Sn+3中令n=1可知a1=3,利用Sn+1-Sn=an+1化简、计算可知an+1-an=2,进而可知数列{an}是首项为3、公差为2的等差数列,计算即得结论;
(Ⅱ)通过(I)可知bn=$\frac{2n+1}{{3}^{n}}$,利用错位相减法计算即得结论.

解答 解:(Ⅰ)∵an2+2an=4Sn+3,
∴a12+2a1=4S1+3,即${{a}_{1}}^{2}-2{a}_{1}-3=0$,
解得:a1=3或a1=-1(舍),
又∵an+12+2an+1=4Sn+1+3,
∴(an+12+2an+1)-(an2+2an)=4an+1
整理得:(an+1-an)(an+1+an)=2(an+1+an),
又∵数列{an}的各项均为正,
∴an+1-an=2,
∴数列{an}是首项为3、公差为2的等差数列,
∴数列{an}的通项公式an=3+2(n-1)=2n+1;
(Ⅱ)由(I)可知bn=$\frac{{a}_{n}}{{3}^{n}}$=$\frac{2n+1}{{3}^{n}}$,
记数列{bn}的前n项和为Tn,则
Tn=3•$\frac{1}{3}$+5•$\frac{1}{{3}^{2}}$+…+(2n+1)•$\frac{1}{{3}^{n}}$,
$\frac{1}{3}$Tn=3•$\frac{1}{{3}^{2}}$+5•$\frac{1}{{3}^{3}}$•…+(2n-1)•$\frac{1}{{3}^{n}}$+(2n+1)•$\frac{1}{{3}^{n+1}}$,
错位相减得:$\frac{2}{3}$Tn=1+2($\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$•…+$\frac{1}{{3}^{n}}$)-(2n+1)•$\frac{1}{{3}^{n+1}}$
=1+2×$\frac{\frac{1}{{3}^{2}}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-$\frac{2n+1}{{3}^{n+1}}$
=$\frac{4}{3}$-$\frac{2n+4}{{3}^{n+1}}$,
∴Tn=$\frac{3}{2}$($\frac{4}{3}$-$\frac{2n+4}{{3}^{n+1}}$)=2-$\frac{n+2}{{3}^{n}}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=log2(4x)•log2($\frac{x}{2}$),$\frac{1}{4}$≤x≤4.
(1)求f($\frac{1}{2}$);
(2)若t=log2x,求t的取值范围;
(3)求f(x)的最值,并给出最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线nx-y-n+1=0与直线x-ny=2n的交点在第二象限,则n的取值范围是(  )
A.(0,1)B.(-1,1)C.(1,3)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的前n项和为Sn,a5=5,S5=15.
(1)求数列{an}的通项公式;
(2)求数列{2n•an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的反函数.
(1)y=log6x;
(2)y=2-x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且满足Sn=2(an-1)(n∈N*).
(1)求数列{an}的 通项公式;
(2)设bn=lnan(n∈N*),试求数列{$\frac{1}{{b}_{n}{b}_{n+2}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(m2-m-1)xm-3,m为何值时;
(1)f(x)是正比例函数,并求此时f(3)的值;
(2)f(x)是二次函数,并求此时f(2)的值;
(3)f(x)是幂函数,并求此时f(1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F1,F2分别是椭圆x2+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<1)的左,右焦点,过F1的直线L与椭圆相交于A,B两点,|AB|=$\frac{4}{3}$,直线L的斜率为1,则b的值为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其中F1、F2为左右焦点,O为坐标原点,直线l与椭圆交于P(x1、y1),Q(x2,y2)两个不同点,当直线l过椭圆C右焦点F2且倾斜角为$\frac{π}{4}$时,原点O到直线l的距离为$\frac{\sqrt{2}}{2}$,又椭圆上的点到焦点F2的最近距离为$\sqrt{3}$-1
(1)求椭圆C的方程;
(2)以OP、OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为$\sqrt{6}$时,求平行四边形OQNP的对角线之积|ON|•|PQ|的最大值.

查看答案和解析>>

同步练习册答案